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ABSTRACT

This article generalizes a multivariate skew-elliptical distribution and describes its many
interesting properties. The univariate version of the new distribution is compared with two
other currently used distributions. The use of the new distribution is illustrated with a real
data example suitable for regression modeling. The new model provides a better model fit

than its two rivals as evaluated by some suitable Bayesian model selection criteria.
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1 INTRODUCTION

Recently there has been renewed interest in the statistical literature towards robust statistical
methods in order to represent features of the data as adequately as possible and reduce
unrealistic assumptions. This remark is reflected in the substantial growth in the number
of distributional families developed, studied and used for data modeling as alternatives to
the normal theory statistics. See the edited volume by Genton (2004) for a snapshot of
recent activities. Some families of distributions which allow for skewness and contain the
normal distribution as a proper member or as a limiting case have played an important
role in these developments. Among them are the skew-normal distribution (Azzalini, 1985,
1986), the multivariate skew-normal distribution (Azzalini and Dalla Valle, 1996), the two-
piece normal distribution (John, 1982), the epsilon-skew-normal distribution (Mudholkar

and Hutson, 2000), the skew-¢ distribution (Jones and Faddy, 2003), the generalized skew-t



distribution (Theodossiou, 1998), the two-piece ¢ distribution (Fernandez and Steel, 1998),
the skew-elliptical distribution (Sahu, Dey and Branco, 2003), and the generalized skew-
elliptical distribution (Genton and Loperfido, 2002).

The term skew normal distribution was first introduced by Azzalini in 1985 as a natural
extension of the normal density to accommodate asymmetry. A random variable Z is said to

have a skew normal distribution with parameter A\ € R if it has probability density function
f(2]A) =2¢0(2)@(Xz), zeR (1)

where here and henceforth we denote the standard normal density and distribution function
by ¢(-) and ®(-) respectively. The above density is positively skewed when A > 0, negatively
skewed when A < 0, and symmetric when A = 0 (in which case it coincides with the standard
normal distribution). Therefore it is reasonable to regard A as the skewness parameter.

The above skew normal distribution can be physically justified by considering its genesis.
For example, Arnold et al. (1993) derive it as the marginalization of a hidden truncated
bivariate normal density; and Loperfido (2002) has shown it as emerging from selective re-
porting. The distinct genesis representations may also be useful for simplifying some compu-
tations such as the moments and random variate generation. Another attractive implication
of the various genesis methods is that they can be fruitfully employed for extending the basic
skew normal distribution to more general settings. Although this opens the way to the study
of particular cases, this paper will only use a conditioning and truncation method described
in Sahu et al. (2003).

This article extends the previous version of skew-elliptical (SE) distribution, introduced
by Sahu et al. (2003). The extended class is distinct from the one obtained by Branco and
Dey (2001) but contains the Sahu et al. (2003) family as a special case. Branco and Dey
(2001) develop their multivariate SE distributions by conditioning on one suitable random
variable being positive while Sahu et al. (2003) impose the non-negativity condition on the
same number of random variables. Heuristically, we generalize their ideas by releasing the
dimensionality restriction on the conditioned variables.

In Section 2 we derive the density function of this new SE distribution. The family
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is then used in Section 3 to define a class of univariate skew normal distributions, which
is the main focus for the remainder of the paper. Central moments of the skew-normal
distribution are obtained, along with a discussion of some related properties. Section 4
compares three distinct versions of univariate skew normal distributions. Linear regression
models are developed using the new distribution in Section 5. A real data example is given
in Section 6. The paper concludes with a few summary remarks in Section 7. An appendix

contains the proofs of the theoretical results.

2 DERIVATION OF THE SKEW-ELLIPTICAL DISTRIBUTIONS

The present section utilizes a general method for introducing skewness into any symmetric
distributions and applies it on the elliptical distributions. To this end, consider two indepen-
dent random vectors U and V, both with unimodal and symmetric densities. Now a class

of skew distributions can be generated via the following formulation
Z=DU+V, U>0 (2)

where D is a fixed matrix. For the univariate setting in which U and V are chosen to
be independent and identically standard normal random variables, a simple convolution
computation shows that Z/v/D? + 1 indeed has a basic skew normal distribution (1) with
A = D. The paradigm (2) provides a very simple way of generalizing the basic skew normal
density.

The replacement of normal variate in the development of model (1) by other statisti-
cal distributions has become quite popular. For example, Arnold and Beaver (2000, 2002)
have substituted the normal component by a suitable heavy tail alternative to obtain the
skew Cauchy density. A broader class of multidimensional models, hinted by Azzalini and
Capitanio (1999), can be elicited if the normal distribution is replaced by an elliptical dis-
tribution. Adcock and Shutes (2005) use the exponential distribution as a skewing function
to obtain a multivariate skew-normal distribution. Some other results along these lines can

be found in Branco and Dey (2001) and Sahu et al. (2003). The probability distribution
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proposed in this section extends the previous version induced by Sahu et al. (2003). Before
presenting the new skew elliptical distribution, it is useful to recall the definition of the

elliptical distributions.

2.1 ELLIPTICAL DISTRIBUTIONS

The elliptical distribution, originally defined by Kelker (1970), represents a natural general-
ization of the concept of symmetry to the multivariate setting. A comprehensive review of
the distribution can be found in Fang et al. (1990). A random vector X with values in R*
has an elliptical distribution with location vector p € R* and scale matrix ¥ if its density

function is of the form

Fxle, 555 g®) = [S[72gW[(x — )57 (x — )] (3)
for some density generator function defined by

g(k) (u) — F(]{3/2) g(u; k)

Y , >0
k2 [ rk2=1g(r; k)dr "

where g(u; k) is a non-increasing function ensuring that the integral [°r%/27 g(r;k)dr
exists. For simplicity, ¥ is assumed to be positive definite. In what follows the notation
El(p,%; g™®) will be used to describe the above probability distribution.

The choice of generator function ¢g*)(-) will determine the distribution of X. Tts flexibility
enables the elliptical class to acknowledge many well-known symmetrical distributions as
proper members, e.g. the multivariate normal, uniform, Student’s ¢, exponential power, and
Pearson type II distributions. These densities have a wide range of tail shapes, but the
general specification of X being elliptically distributed does not imply either light or heavy
tailed distribution. Hence, to some extent, it is admissible to consider (3) as a universal model
for summarizing kurtosis of a symmetric data. The particular case of normal distribution
Ni(p, ¥) is obtained by defining g(u; k) = e™/2. Note that the function g(u; k) may depend
on other parameters. As an example, the Student’s ¢ distribution is obtained by taking

o) = [+ ul >0,



Elliptical distribution, however, imposes the restriction on symmetry, which does not
facilitate the analysis of the effects of skewness. It is accepted that, in real applications,
kurtosis and skewness are often observed characteristics of empirical data. Accordingly,
statistics employed by assuming ellipticity are not always valid and can be of little value
for summarizing the structure in a body of data. The ability to incorporate these pervasive
features simultaneously is therefore an important practical consideration. Hence it seems
reasonable and appropriate to acquire a skewed version of elliptical distribution so as to

enable a trustworthy analysis of non-normal data.

2.2 SKEW-ELLIPTICAL DISTRIBUTIONS

The general procedure of skewing a symmetric unimodal distribution presented at the be-
ginning of this section provides a simple yet powerful way for generating new distributions.
The following theorem applies the previous results to develop a general class of skewed mul-
tivariate distributions. The proof of the theorem, provided in the Appendix, rests mainly on

the properties of the elliptical distributions, see Chapter 2 of Fang et al. (1990).
Theorem 1 Let U and V be two independent random vectors distributed as
U~ EI0,T;g”) and V ~ El(pu,3;¢"™).

Here 0 is the zero vector and I is the identity matrix. Let Z,,x1 = DpxpUpx1 + Vixi. The
conditional density of [Z|U > 0] will be of the form

h(z|p, %, D; g'™) = 27 f (2|, %> + DDT; g™) Pr(W > 0|z), (4)
where f(-) is the elliptical density function as that in (3), and

W|z ~ EI(D”[S + DD"] 'z,,I1 - D”[S + DD”]7'D; ¢ ),

q(2+)
where ¢(z,) = zI [ + DD?] 'z,, z, =z — p and

g(p)(u):F(pﬂ) _ g(a+u;m+p) '
@ P/2 Jo 2 tg(a+r;m+ p)dr




Non-singularity of the distributional parameter ¥ + DDY is a prerequisite for ensuring
the existence of the resulting density (4). The matrix D, in a broad sense, controls the
degree of asymmetry of the density via the probability function Pr(W > 0|z). Henceforth
D will be interpreted as the skewness parameter and Pr(W > 0|z) as the skewing function.
It is clear that the particular case D = 0 corresponds to the one of the elliptical distri-
bution El(p,%; ¢™). Consequently, the random vector Y = [Z > 0] can reasonably be
regarded as having an m-dimensional skew-elliptical distribution. For brevity, the symbols
SE(u,%, Dyxp; g'™) are employed to denote the sampling density in (4). Note that, in
general, the quantities g and X are not the mean and the scale matrix of Y as the density
may not be symmetric with respect to pu.

The use of an elliptical model in the development of (4) is motivated by its desirable
property of including thin and thick tailed distributions as special cases. As a result, in
addition to the obvious increased flexibility in skewness, the family SE(u,Y, Dpyp; 9™)
should allow for a variety of tail thickness. In the case where D = ¢I, the proposed class
closely parallels to the one given in Branco and Dey (2001). Moreover, it agrees with the
skew elliptical densities mentioned in Sahu et al. (2003) when D is diagonal of order m.
Therefore the present class includes the earlier version obtained by Sahu et al. (2003) as a
special case. Another appealing feature of the skew elliptical in (4) is its coherence under
marginalization operation, i.e. it has marginal distributions that still belong to the same
family. This is essentially an implicit result in the genesis of the distribution. Although the
skewing function Pr(W > 0|z) may prove to be hard to evaluate, it need not be computed for
practical model fitting using the popular Markov chain Monte Carlo methods, see Section 5.
Summing up, this new skew distribution should be valuable in modeling multivariate random

phenomena which display both skewness and kurtosis.



3 SKEW-NORMAL DISTRIBUTIONS

As pointed out in the last section, construction (2) is a vigorous technical tool for transform-
ing a symmetric distribution into a skewed one. Clearly, joint consideration of asymmetry
and tail behavior can now be achieved by applying this method to a suitable fat or thin tailed
distribution. From the inferential viewpoint it means that the resulting skew distribution
is made up of two components, DU and V in the preceding notations. Skewness is driven
only by a single vector U and its sensitivity is dependent on D. Although it is not obvious
in the context, operation (2) does have an effect on other distributional characteristics. The
principal purpose of the current section is to examine how procedure (2) influences the shape
of the skewed density. Since normal distribution has been the standard point of reference
for many characteristic measurements, attention will be held on its skewed counterpart from
this time onwards. After presenting the density function of the m-dimensional version, this
section will focus on the general univariate case. Specifically, mathematical moments and

some properties of the latter will be presented in streamlined form.

3.1 MULTIVARIATE SKEW-NORMAL DISTRIBUTIONS

u/2

As an immediate use of Theorem 1, consider the particular case g(u; m) = e~*/*. Now, since

(p)

q(z~
is straightforward to verify that the joint density of Y = [Z|U > 0] is of the form

—m/2€—u/2

the generator function simplifies to g(™ (u) = (27) and g )(u) is free of ¢(z,), it

h(y|, B, Dinxp) = 27| + DD’ |79, ([ + DD']*(y — p)) Pr(W > 0ly),  (5)
where ¢,, is the multivariate normal density of N,,(0,I), and
W|Y =y ~ N,(D'[X + DD"] ! (y — p),Lx, — D'[E + DD"|'D).

It follows that Y has a multivariate skew normal distribution, indicated henceforth by the
notation Y ~ SN, (i, X, Dyxpp). As expected the original normal density is retrieved when

D = 0. Conversely, deviation of the parameter D from 0 measures the departure of the



distribution from normality. Therefore the above family nests the normal distribution as a

proper member and permits a continuous departure from normality to non-normality.

3.2 UNIVARIATE SKEW-NORMAL DISTRIBUTIONS
3.2.1 DENSITY FUNCTION

Specifying m = 1 in (5), the matrix D becomes a column vector §” = (dy,...,5,) € R? and

2

> reduces to a scalar ¢°. In this case, Y is a univariate skew normal variate with density

function given by

P Y —
hlylu,0*,6) = ¢ £ Pr(W>0ly),  (6)
N T R By R .
where
y— 1 T
WY =y~ N, 8, Ly — 66" ).
Y=y ”(02+6%+---+5§”’X” 0%+ 07 4 - + 02 )

In what follows, (6) will be referred to the general form of the univariate skew normal

distribution.

3.2.2 MOMENTS

As mentioned previously computation of the skewing function Pr(W > 0ly) can be obstruc-
tive. As a consequence, direct evaluation of the moments of the general univariate skew
normal distribution will not be straightforward. A convenient way of proceeding is the fol-
lowing one. According to the representation (2), Y ~ SN(u,0?,68) is the upshot of a linear

combination of independent normal and standard half normal random variables. That is
Y =6"Up +V U > 0, (7)

where V' and Uy, - - -, U, independent and V' ~ N(u,0?) and each U; follows the standard
half normal distribution. Using this fact as well as the properties of moment generating
function, expressions for the mean and the central moments of orders two through four are

explicitly evaluated as follows.



Result 1 Let m;(Y) == E[{Y — E(Y)}']. The random variable ¥ has

2 2
EY)=p+ 01+ +6,) - my(Y) =0®+ (6 +---+6)) (1—;),

mg(Y) = (6] +---+0,) % (é—1) :
my(Y) =30+ (6t +---4+0) [3—-2(2+1)]
+6 [(6%+---+5§) (1—2)o2+62---62( —2)2] :
The proof of this result is placed in the Appendix.
In order to illustrate the influence of the parameter 4, it is necessary to adopt some
suitable measures of skewness and kurtosis. To this end, a natural choice is the two classical
measurements defined as follows. The skewness and kurtosis measures of a random variable

X are respectively defined as the third and fourth standardized central moments of X, i.e.

_ E{X - E(X)}’] _E{X-EX)} _

Sk(X) = Var(OFE and Ku(X) = Var(X)P 3.

Thus skewness and kurtosis of Y can be readily obtained from the moments reported in Result
1. Intuitively, symmetrical distributions have skewness measures equal to zero, positive
values correspond to distributions skewed to the right and negative values to those skewed to
the left. Kurtosis, on the other hand, measures the degree of flatness of a density. Intrinsically
positive kurtosis indicates peaked center and negative one signifies flat center relative to the
normal curve.

An elementary calculation demonstrates that the skewness approaches its supremum

(infimum) as §; = co(—o0), i =1,---,p, with
sup[Sk(Y)] = — inf[Sk(Y)] = V2(4 — 7) (7 — 2)3/% ~ 0.9953.
Similarly, the bounds of the kurtosis can be shown to be
0< Ku(Y) < (3m* —4n —12)(r —2)"? =3 (=~ 0.8692).

Therefore we conclude that, with other parameters fixed, § in (6) can only produce more

central peakedness than those in the original distribution.
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In addition to creating some savings in moment calculations, relation (7) leads to an
efficient algorithm for computer generation of skew normal random samples. The method
can be described as follows. First, sample a p-dimensional vector U from N,(0,I) and a

scalar V from N(u,0?). Then a random number Y from density (6) is obtained by setting

This construction avoids rejection of sampling. The role played by & will be further high-

lighted in the coming sections.

3.2.3 SOME SIMPLE PROPERTIES

Note that there is no closed form expression for the distribution function of Y. Here we list

other basic properties of the general univariate skew normal distribution.
Property 1 The density (6) reduces properly to the N(u,0?) density when § = 0.

Property 2 Reversing the sign of § and p in (6) yields the density of =Y, i.e. the distri-
bution SN(—pu, 02, —8) is the reflection of the distribution of SN(u,0?,d) about y = 0.

Property 3 The way in which § intervenes in the central moments implies that
Sk(Y|o?, —8) = —Sk(Y|o?,6) and Ku(Y|0?, —8) = Ku(Y|0?, 6).

Property 4 The parameter d regulates skewness, which is positive if A > 0 and negative if

A < 0 where A =P | §2. Clearly, symmetric distribution can be obtained by taking A = 0.

Property 5 The skewness Sk(Y') is an increasing function of ¢; while the kurtosis Ku(Y')

is an increasing function of [§;], i =1,--- , p.

Property 6 Large 6 will have momentous impact on the spread on (6) as Var(Y') grows

without bound with the absolute value of §;, 2 =1,--- ,p.

dlog h(y)

ay 18 a decreasing function of y it follows that the density (6) is

Property 7 Since

unimodal.
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Property 8 The mode of SN(u,c?,§) is at the right of u when > *_ 62 > 0 and vice versa.

i=1"1

Except for the symmetric cases, it is in general not possible to find the mode analytically.

3.3 'TWO SPECIFIC CASES OF UNIVARIATE SKEW-NORMAL DISTRIBUTIONS

Generally speaking, a one-parameter distribution can model only one empirical characteristic
while greater flexibility is necessarily accompanied by increasing complexity in probability
distribution. Therefore, the choice of p in (6) should depend on the level of difficulty in
modeling the distributional characteristics in a body of data. From a pragmatic perspective,
normal distribution (p = 0) is often sufficient for reflecting the structure underlying a popu-
lation distribution. Other selections of p can be useful for analyzing data with the presence
of possible skewness or kurtosis. For ease of exposition, only two particular cases of (6) are
examined extensively in the rest of this paper.

The case p = 1 is of special interest, since it coincides with the univariate skew normal
distribution obtained by Sahu et al. (2003). After some straightforward computations, it
follows that the density of Y is of the form

2 — o —
o) = e |t (o v e ©

We write Y ~ SN 4y, (1, 02, 6) for future reference. For this density the effect of increasing §

is to magnify both the dispersion and asymmetry of the distribution. See Sahu et al. (2003)
for various possible shapes of this distribution.
Considering p = 2, it is straightforward to verify that
h<y|u,02, (gl))z : 42 = P
2 VR 6+ 0 [\o? + 07+
where F' stands for the cumulative density function of the bivariate normal distribution

_ Y— U (51) 1 o? + (Sg —(51(52
0+ 61 +05\0) * + 0+ 5\ _55, oF 402

F(0), (9)

N,

Henceforth, we shall denote this distribution by SNpew (1, 02, (g;)) Examples of the densities

for different combinations of values for d; and 5 are presented in Figure 1. Observe that the
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graphs plotted below the diagonal are duplications of those above. This is a consequence of
the exchangeability property of §; and J,.

Besides the discrepancy in the level of algebraic complications, densities (8) and (9) differ
in the sense that skewness of the former is driven by differences in (J;, —d3), while the latter
by a single parameter §. Trivially, density (9) reduces to the one in (8) when §; = 0 or
when J, = 0. As it might be expected, the major improvement involving the presence of an
additional parameter is the flexibility in kurtosis variation. The three-parameter density (8)
imposes some restraints on the kurtosis as soon as the skewness is fixed. In contrast, a broad
range of the kurtosis of (9) can be covered by appropriate choices of §; and d, for any degree
of skewness. To gain more insight in the impact of (2) on the kurtosis, consider Figure 2
which provides plots of (9) when d; is set to equal —d, with variance of Y appointed at unity.
All graphs in the diagram illustrate greater peakedness around the center as compared to

the normal density.

4 GRAPHICAL COMPARISONS

The specific aim of the current section is to compare three different variants of skew normal
distributions by means of some graphical plots. We shall compare these distributions with
a popular skew normal distribution called the two-piece skew normal distribution. This
distribution has been studied by many authors, including Gibbons and Mylroie (1973), John
(1982) and Kimber (1985). See also Fernandez and Steel (1998) for a generalization. The

density function of the two piece skew normal distribution is given by:

ol ®.6) = 2 (¢ L]z 046 M2 10 < o>) S0

where y* = y — p and [ is an indicator function with I(Q) = 1 if @ is true and equals 0
otherwise. For convenience in notation, we say that the random variable Y is of the class
SNtpn (4, 02,8) henceforth. The parameter § € (0,00) controls the allocation of probability
mass to each side of the mode. It can be shown that Pr(Y > pu)/Pr(Y < u) = §°. The
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normal distribution is a special case (§ = 1) and the half normal distribution is a limiting
case. The mode of the distribution (10) is retained at u for any value of 6. See Fernandez
and Steel (1998) for the first four moments of this distribution.

The three distributions we compare are:

1. SNggp, (1, 0%,6): the Sahu et al. (2003) distribution displayed in (8).

2. SNnew(u, o2, (g;)); the new distribution specified by (9).

3. SN¢pn (1, 0%, 0): the two piece skew normal distribution with density (10).

The disparities of these skewed models in distributional structure may be illustrated
effectively by drawing their densities in the same diagram, in which they admit the same
amount of skewness. Yet, in order to have a fair comparison, it is necessary to require
common mean and variance across the distributions. Figure 3 pictures the densities for a
selection of values of mean, variance and skewness. Note that, unlike SNg4, and Sthn
distributions, there is a series of SNnew densities complying with the imposition. In spite of
that, only two of these densities are plotted in the figure so as to enhance visualization. The
supplementary flexibilities of SNpew over SNjy, in terms of height and tails controls should
be apparent from the graphic display. As one can anticipate, the behavior of Sthn exhibits
a manifest difference from the other densities. This is because SNtpy has a much lighter tail
and its distinct style of descending from the mode. Similar figures could be constructed for
other combinations of characteristic measures.

It is of interest to acquire a visual summary of the relationship between the skewing
parameter and the degree of asymmetry of the distributions. On this basis, Figures 4 and 5
delineate the level of skewness measure Sk(Y') as the parameter § changes for representative
values of o2. Although Figure 5 only copes with positive values of §;, analogous plots for the
negative domain can be obtained by a simple 180° rotation. It appears from Figure 4 that
Sthn is very sensitive to variations in ¢. In fact, a wide range of its skewness can be covered
for ¢ varying in (0.2,2). The rate with which SN4, diverges from symmetry as |§| increases

is substantially influenced by the parameter o2. Smaller values of o2 will be associated with

13



greater steeply sloped skewness curves and vice versa. Evidently the parameter has a similar
impact on SNpew, as shown in Figure 5. It is important to note that a rise in |02 4 63| does
not necessarily mean a greater asymmetry, especially when SNpew is already highly skewed.

Figure 6 gives an additional insight into the achievable kurtosis Ku(Y) as a function
of skewness Sk(Y). For SNtpn and SNgqy, distributions, greater asymmetry will inevitably
result in larger values for the kurtosis. Similarly, smaller magnitude of skewness will corre-
spond to less central peakedness. Nonetheless the two distributions depart from normality
in a quite different manner. The gap between the dotted and solid lines shows the advantage
of SNpew over SNsdb in the form of kurtosis variation. It is seen that the advantage is most

perceptible for near normal cases and gradually melted away as asymmetry increases.

5 APPLICATION IN LINEAR REGRESSION MODELS

In this section we illustrate the skew normal distribution SNyew defined in (9) to model the
conditional distribution of a response variable given the covariates. Suppose the observed

data y;, 2 = 1,- - ,n, are independent samples generated from the regression model
Y, =x;B+e; (11)

where x; € R* are the values of k explanatory variables for the i-th observation and 8 =
(B1,- -+, Br)T is a vector of regression parameter associated with these variables and residuals,

€;, are independently, identically distributed random variables having the distribution:

E; SNHGW (0,0’2, <51)) .
0o

An important implication of this assumption is that the conditional mean of Y;|x; will be
equal to x7 3 plus the average value of the error distribution. To parallel the conventional
regression analysis, the error distribution can be forced to take mean zero by suitably ad-
justing S; which is the intercept parameter of the regression model, see Section 6.1 for more

details.
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5.1 THE POSTERIOR DISTRIBUTION

Since the observations are assumed to be independent given x = (xy,--- ,x,)?, the likelihood
function of the model parameters is obtained as the product of the individual density of the

observable y; yielding

i o
Lg% dly.x) = [T (wl.”, () x).
=1

where h(-) is stated in (9). Henceforth in this section, we condition on x; without explicit
mention. Presently, prior distribution for the model parameters is needed to complete the
specification of a Bayesian model. In our investigation, components of both 8 and & are
assigned independent normal prior distributions, and a gamma distribution G(v,v) (having
mean 1) with a small positive choice of v is used as prior for the precision 7 = 1/5?. More

formally, the adopted joint prior distribution is given by

p(,B,T, 6) :p(ﬁ) X p(’l‘) X p(é) = Nk(BaQ) X G(V’ V) X N2(O’ \Ij)

where  and U are diagonal matrices, 8 = (9,0,---,0) (7 is the sample mean), and v =
0.001. We choose the diagonal elements of 2 to be 10* and the diagonal elements of ¥ to be
100. See Sahu et al. (2003) for a detailed discussion regarding the choice and sensitivity of
the prior distributions.
The joint posterior distribution of 8, 7 and & is simply proportional to the likelihood
function times the joint prior distribution
n
p(B,7,61,0,]y) o [ h <y,-|xiTﬂ, o (g;)) « p(B, 7, 8). (12)
i=1
Due to the complexity of the likelihood function, it is not possible to evaluate the marginal
posterior distributions of the model parameters by analytical means. Hence, we resort to
Gibbs sampling. The necessary conditional distributions for use of the Gibbs sampler are
placed in the appendix.
Before proceeding with the examples, there is still a technical issue needing to be ad-

dressed. The roles played by the two skewness parameters in SNpew are exchangeable, thus
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allowing their Gibbs realizations to travel from one target distribution to the other. This
sort of behavior will cause identifiability problems in determining the true marginal distri-
butions of §; and d,. Bimodality will, not surprisingly, be a typical characteristic in the
estimated posterior densities. As a consequence, point and interval estimations based upon
such marginal distributions can be rather misleading about the actual distributional struc-
tures. To resolve this we adopt the following simple strategy. When the estimated marginal
posterior distributions are bimodal with relatively negligible probability mass in between the

modes we recommend using the following steps:

1. At the jth cycle of the Gibbs sampler, re-arrange the MCMC simulated values by
setting
§9) = max(égj), (59)) and 65 = min(égj), (59)),

2. Carry out all marginal calculations using the resulting samples.

This re-labeling proposal should be exercised prudently as it can have an adverse effect in
other situations. For example, it is quite plausible that we might have skewness parameters
with identical true value. Two unimodal marginal distributions (estimated using the original
Gibbs output) will then be encountered. These should themselves provide a good approxima-
tion to the underlying distributions, thus there is no benefit in using the proposed scheme. In
the case where there are two distinct but close modes in the original marginal distributions,
the above approach will inevitably lead to densities with obvious truncations. So, neither
the original nor the re-estimated marginal distributions represent the actual distributions.
Use of the joint distribution to make probability statements will be more sensible in this
situation. However, visual inspection of the original marginal distributions is recommended

before choosing an appropriate method of output analysis.

6 A REAL DATA EXAMPLE

The particular data set that we consider here concerns admission to a Welsh medical insti-

tution in 1996 first reported in Sahu et al. (2003). Non-academic scores for home applicants
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meeting the school academic criteria were recorded after reading the corresponding Uni-
versities & Colleges Admissions Service (UCAS) application forms. (UCAS is the central
organization that processes applications for full-time undergraduate courses at British uni-
versities and colleges.) Candidates who met the non-academic standards would be screened
in the next level of selection process. The objective of the investigation is to determine the
group of students that is least likely to be successful in this stage of their application. Ac-
cordingly, our response variable Y is the non-academic scores of n = 777 individuals, and the
covariates of interest include: number of GCSE A grades zs, race (white or non-white) 3,
age in years x4, and predicted /achieved A Level examination points z5. Interaction between
number of GCSE A grades and age x4 = x,x4 is also embraced in the analysis, since it is
a significant predictor in classical normal regression. Note that GCSE, stands for General
Certificate of Secondary Education, is a national school leaving examination in Britain. As
we shall see below there is considerable amount of skewness present in the response variable.

A total of four sampling models have been fitted: SNnew in (9), SNgqy, in (8), SN¢pp
in (10) and the usual normal model. Legitimate comparison is elicited by allocating 8 and
7 in the latter models the same prior distributions as those specified in Section 5. The
remaining parameter 0 is given the N(0,100) prior under the SNgq}, model whilst a-priori
6 ~ N(0,100)I(6 > 0) is specified for the SN¢p;, model. The Gibbs sampler outlined earlier
has been executed by using the WinBUGS software, (Spiegelhalter et al., 1996). Inferences
are based on 200, 000 sequential version of Gibbs realizations, following a burn-in period of

10, 000 iterations to mitigate the impact of starting points.

6.1 RESuULTS

Table 1 reports the parameter estimates for all four models under consideration. Inspection
of the table indicates little alteration in the estimates of 55 and [5, but inferences on By, B4
and (g are noticeably affected by allowing for skewness. A closer examination reveals that the
posterior mean of the latter parameters are very close to zero under the skew normal models.

In other words, the covariate effects are attenuated by assuming skewed models. Further
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B1 Jp) Bs Ba Bs Be o? d or 61 o2

Normal 25.1 1.51 -0.91 0.40 0.05 -0.05 9.36 - -
(0.123)  (0.377) (0.278) (0.106) (0.017) (0.020)  (0.478)

SNSdb 28.2 1.07 -0.87 0.29 0.05 -0.03 3.71 -3.90 -
(0.217)  (0.387) (0.260) (0.111) (0.016) (0.020) (0.550)  (0.253)

SNt}pn 26.4 1.04 -0.94 0.29 0.05 -0.03 8.21 0.75 -
(0.260) (0.388) (0.261) (0.111) (0.016) (0.021) (0.487)  (0.039)

SNnew 26.92 0.93 -0.89 0.27 0.05 -0.03 1.16 -4.20 1.88
(0.793)  (0.403) (0.253) (0.110) (0.017) (0.021) (1.184) (0.327) (1.140)

Table 1: Parameter estimates and the associated standard deviations (given in parentheses) for the non-

academic scores example.

insight into the behavior of these parameters is obtained through graphical representations of
their marginal densities in Figure 7. As shown in the diagrams, the marginal posterior distri-
butions based on SN} and Sthn modeling are remarkably cohesive. Interestingly, there
seems to be evidence of association between sampling model flexibility and marginal locality
(simpler sampling model possesses marginal distributions that are farther from zero). One
concern in the plots is the effect of the interaction variable on the analysis. The skewed sam-
pling assumptions induce S to have substantial posterior mass around zero, thus lessening
the interaction variable’s momentousness in predicting the non-academic scores. Therefore,
according to the skewed normal models, there is an improvement in regression additivity in
the sense that the main covariates are emphasized relative to the interaction.

On the basis of the 95% credible intervals, it appears that modeling using different
versions of error distribution can have considerable influences on the posterior of 3;. This
is not surprising because J; is not the true regression intercept in the skew normal cases.
We can express the actual intercept parameter o as: a = [ + 5\/2/7 for SNggp; @ =
Bi+0(5—1/8)\/2/m for SNtpn; and a = B + (61 +02)+/2/7 for SNpew. Thus a meaningful

location comparison should be obtained via « instead of 5;. Markov chain simulations of the

18



intercept are readily computed from the existing Gibbs output. The resulting « estimates for
SNedb> Sthn and SNpew, together with their estimated standard deviations in parentheses,
are given by 25.1 (0.122), 25.0 (0.126), and 25.1 (0.122) respectively. As expected, these
values are in good agreement and are consistent with the findings in the normal model.
Consider now the inferences on the shape parameters: ¢2 and §. Table 1 shows notably
different estimates of o2 under the normal model as compared to the skewed models. This is
justifiable since the parameter has dissimilar interpretations for all these models. Variability
of the data is represented solely by o2 in the normal case, but non-zero skewness parameter(s)
also share part of the variability in the skew normal cases. This explains the differences in
the estimates. Posterior means of ¢ for both SN¢p, and SNg4p show that moderate right
skewness is present in the data. Statistical significance of the parameter under the two
models reinforces the fact that normal family would be unsuitable for modeling the original
non-academic scores. The reported estimates of §; and d, are also significant and lead to

similar conclusion.

6.2 MODEL COMPARISONS

To assess model adequacy, Figure 8 displays the data histogram with superimposed posterior
predictive densities under each of the four models. All skewed models seem to provide an
adequate fit to the non-academic scores, with the predictive distribution from SNpew most
closely resembles the histogram. Observe that the predictive distribution under the normal
model needs to be shifted to the left in order to account for the skewness in the data. This
has an adverse effect on the model ability in capturing the peak of the histogram. A formal
model comparison can be conducted through the use of Bayes factors. We compute the
criterion by exercising the methods advocated by Meng and Wong (1996). Table 2 lists the
resulting Bayes factors. The upshots indicate a dramatic improvement in the skew normal
fits over the normal fit. In addition, SNpew is substantially better than SNg4y,, which is in
turn definitely preferable to Sthn- Hence, the Bayes factor approach selects SNpew as the

best model for the empirical data.
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SNneW SNSdb Sthn Normal

SNnew 1 4.76  5.92E3 4.87TES8
SNgdb - 1 1.24E3 1.02E8
Sthn - - 1 8.23E4
Normal - - - 1

Table 2: Bayes factors based on the Laplace-bridge method for non-academic scores data. Entry (i, )

indicates the evidence in favor of model i versus model j. (Note: RER = £ x 10%.)

6.3 (CONCLUSIONS

The analysis based on our best model SNy ew suggests that non-academic scores are strongly
related to number of GCSE A grades, race, age and number of predicted/achieved A Level
points. Individual scores improve with GCSE results at approximately 0.93 credit for each
A grade. Good non-academic outcomes are more prevalent among white students, who have
0.89 higher scores than non-white candidates generally. Age of the applicants also have a
positive impact on the non-academic totals. The relative increment is about 0.27 unit per
age year. As for the GCSE results, number of predicted/achieved A level points is positively
related to the non-academic outcome. However, the magnitude of influence is much smaller,
approaching 0.05 score for each A level point gained. The analysis indicates no evidence of
association between the response and the interaction effect, contradicting the upshot under
the normal regression model. Putting these results together, we conclude that young non-
white students with unfavorable GCSE and A level outcomes are those most probable to

achieve inferior non-academic scores.

7 DISCUSSION

There are many possible ways of generalizing the skew elliptical distribution (4). Some

suggestions are: (i) From representation (2), it may be claimed that skewness is instigated
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by some unobserved additive random effects U which were truncated at a specific threshold.
This suggests that further flexibility should be annexed to the model (4) by adopting a
more general threshold or permitting broader style of truncation on U. (ii) The random
variables U and V used in the development of elliptical distribution were assumed to have
come from the same standard family. Allowing a combination of assorted distributions
will result in new classes of skewed distributions. (iii) A natural way of extending (4) is to
utilize a comprehensive transformation mechanism admitting the representation: DU+ BV.
Obviously, a joint density for U and V can be used instead, for the sake of releasing the
independence assumption, which in turn will lead to extra level of generalization.

In this paper a new class of univariate skew normal distributions is obtained by using
simple transformation and conditioning. The family represents a mathematically tractable
extension of the normal density, with the addition of a vector of parameters 4 to regulate
distributional shape. Our focus in this paper has been concentrated on the scalar and the 2
dimensional § cases. We find the latter case quite appealing for some of its attractive features.
It contains the normal distribution by strict inclusion, thus allowing a smooth transition
from normality to non-normality. It admits the Sahu et al. (2003) skew normal density
(equivalent to the scalar § case) as a proper member, but possesses an extra parameter to
account for kurtosis. It is a flexible unimodal density that is able to reflect practical values of
skewness and some levels of non-normal peakedness. Therefore, the proposed four-parameter
distribution is potentially useful for data modeling, statistical analysis and robustness studies

of normal theory methods. We have illustrated this with an example in linear regression.

APPENDIX

Proof of Theorem 1: To derive (4), we need the following well-known results, see Fang et al. (1990).
Suppose that X ~ El(u,%;¢™). Now partition X into X7 = (Xa),X@)) of dimensions m and
n — m respectively, with the corresponding partitions of u and X as

by Y
- (p(1)> . 11 212
H2) o1 Yoo
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Lemma 1 (Theorem 2.16 of Fang et al., 1990.) If B is a non-singular n X m matrix and v is an
m X 1 vector, then

v+ B'X ~ El(v + B, B'SB; (™).

Lemma 2 (Corollary of Fang et al., 1990: page 43.) The marginal distributions of X1y and X )
are given by:

Xy ~ El(#u),zn;g(m))a X(9) ~ El(#@)azm;g(n_m)).

Lemma 3 (Theorem 2.18 of Fang et al., 1990.) The conditional distribution X;)|X(y) is given by

X)X =x@) ~ El(p1.2, 211.2;9221)(2)))

where

Bio =Mt 21222721("(2) - “’(2))7 S112 = 11 — T12855 Dot
I'(m/2) gla+u;m+mn)
/2 [ rm/2=1g(a + r;m + n)dr’

a(x(2)) = (x2) — 2) Tos (X2) — B(2)> 9™ (w) =

An alternative and convenient expression for (2) is the following
(mel) o Inxm Dmxp (mel)
W1 Opxm  Ipxp Upxi1)’

from which the probability density function (4) can be obtained by computing the conditional
density Z|W > 0.

It can be easily verified from Lemma 1 that

(mel> ~ El (I"’mxl) Eme‘FDD?nxm Dm><p _g(m+p)

W 1 0 1 T ’
px pX Dpxm IPXP

It follows easily using Lemma 2 that

Z ~ El(u,% + DDT; g™y,
W ~ EI(0,L; ¢'?)).

Symmetry of the elliptical distribution and the Bayes theorem implies that
h(z[W > 0) = 2° f(z|p, = + (DDT); g™ Pr(W > 0|z).
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The proof is completed by specifying the conditional density of W|Z using Lemma 1:

W|Z =2 ~ EI(D” (% + DD”) '2,,T,,, - DT (S + DD”) 'D; %) ),

where z, = z — p, q(z,) = zL [Z + DD”]|2,, and

(7) () = I'(p/2) g(a +u;m + p)
/2 [P P2 g(a + rym + p)dr

O

Proof of Result 1: The derivation of the above equations is straightforward but lengthy, the basic
steps are presented as follows. For convenience, we provide the details for the case p = 2, the proof
for the general case is similar. Now, as a result of (7), the moment generating function of Y can
be written as

My (t) = Mz, (t) Mz, (t) My (t).

Here Z; = 6;U;, i = 1,2. In general, My (t) has no closed form expression since Mz, (t) and Mz, (t)
do not lend themselves to explicit computation. Nevertheless, the above formulation can still be
used as an indirect tool to obtain the moments.

Together with the fact gT:M X (t)‘ o = E(X7), it is easy to check that the central moments of Y

satisfy the relationships

my Y)= m4(Z1) + m4(Z2) + m4(V)—|—
6[Var(Z1)Var(Zs) + Var(Z1)Var(V) + Var(Z3)Var(V)],
where m;(X) = E[{X — E(X)}*]. These results essentially reduce the problem to the evaluation of

moments of normal and standard half normal distributions.

The r-th non-central moments of Z;, ¢ =1, 2, is

§rior/2 (17L)) when 7 is odd,

E(Z]) =
Z 672-(r=2)/21.3.5...(r —1) when 7 is even.
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The r-th central moments of V is

, 0 when r is odd,
mv-u)={ " ‘
G7aiaz  Whenr is even.

The proof follows immediately by direct substitution.

FULL CONDITIONAL DISTRIBUTIONS FOR (GIBBS SAMPLING

Because the skewing function of the sampling distribution (9) does not possess a closed form
expression, it is not possible to obtain the required conditional distributions directly from (12).
A better way to proceed is the following. Notice that the derivation of the sampling distribution

allows us to alternatively express the skew normal linear regression model in (11) as
Y,':XZT,B-I—(sTZZ‘—FEi, Zi >0

with

A
2= ()~ M) and Vo)
21

where Z; and ¢; are independent, and § = (d1,d2)7. Evidently, by treating the auxiliary variables
Z; as covariates, model (11) is seen to have an underlying normal linear regression model on the
observations y = (y1,--+ ,yn)’. Thus casting the model in this form eliminates the need for the
skewing function evaluations which in turn greatly facilitates the computation of the conditional
distributions.

Now the complete Bayesian model of all the unknowns (Z, B, o2, and §) can be written

hierarchically as
YHZiaIB’UQa 0~ N(X;TIB + 6Tzi502)5 Zz ~ NQ(O’I)I(ZZ > O)’

B~ Nu(B.Q), 7= ~G1,v),6 ~ Ny(0, T).

g

The expression for the joint posterior density is then

p(z,B,7,0y) o< p(y|z, B, T,8)p(z)p(B)p(T)p(d).
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Now straightforward calculations yield the conditional distributions of the regression parameters

given by:
st I Rt )
] ;351 7 + 02 Qi @l + 0
for s # j,7 =1,--- , k. For the scale and skewness parameters we obtain

1 n
T = %'ﬁ,&,Z,yNG <g+V,§Z(yi—XZ,B—6TZi)2+V)

i=1
and
. Uiy (yi—xT,B—(sti—l—é-(z-)i)(z-)i o2
5'|,3,02,{5 cs# i}z, y ~ N| 22zl i j\Zj i)i jj ’
’ ’ U5 i (25)7 + o U5 i (29)7 + o
for 7 = 1, 2. Finally, Z;’s have full conditional distributions defined by
i —XT ) 1 52 ‘|‘O'2 —6152
Zi'ﬂa0276ayiNN2 317221.%( l)a 2, 52, 92 ? I(Z'L>O)
(51—{-(52 + 02 \ 09 51 +(52—|-O' —6109 5%4—0’2

These distributions are all of standard functional forms in which sample generation is relatively

straightforward. So, Gibbs sampling can be easily implemented.

BIBLIOGRAPHY
Adcock, C. J. and Shutes, K. (2005). A Multivariate Skew-Normal Exponential Distribution.
Technical Report, Management School, University of Sheffield, UK.

Arnold, B. C. and Beaver, R. J. (2000). The skew-Cauchy distribution. Statistics & Probability
Letters, 49, 285-290.

Arnold, B. C. and Beaver, R. J. (2002). Skewed multivariate models related to hidden truncation

and/or selective reporting. Test, 11, 7-54.

Arnold, B. C., Beaver, R. J., Groeneveld R. A. and Meeker, W. Q. (1993). The nontruncated

marginal of a truncated bivariate normal distribution. Psychometrika, 58, 471-488.

Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal

of Statistics, 12, 171-178.

Azzalini, A. (1986). Further results on a class of distributions which includes the normal ones.

Statistica, 46, 199-208.

25



Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew normal

distribution. Journal of the Royal Statistical Society, B, 61, 579-602.

Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika,
83, 715-726.

Branco, M. D. and Dey, D. K. (2001). A general class of multivariate skew-elliptical distributions.
Journal of Multivariate Analysis, 79, 99-113.

Fang, K. T., Kotz, S. and Ng, K. W. (1990). Symmetric multivariate and related distributions.

London: Chapman and Hall.

Fernandez, C. and Steel, M. F. J. (1998). On Bayesian modeling of fat tails and skewness. Journal
of the American Statistical Association, 93, 359-371.

Genton, M. G (2004). Skew-Elliptical Distributions and Their Applications: A Journey Beyond
Normality. Boca Raton: Chapman & Hall/CRC.

Genton, M. G. and Loperfido, N. (2002). Generalized skew-elliptical distributions and their
quadratic forms. Institute of Statistics Mimeo Series 2539, Annals of the Institute of Statisti-

cal Mathematics.

Gibbons, J. F. and Mylroie, S. (1973). Estimation of impurity profiles in ion-implanted amorphous
targets using joined half-Gaussian distributions. Applied Physics Letters, 22, 568-572.

Henze, N. (1986). A probabilistic representation of the ’skew-normal’ distribution. Scandinavian

Journal of Statistics, 13, 271-275.

John, S. (1982). The three parameter two-piece normal family of distributions and its fitting.
Communications in Statistics — Theory and Methods, 11, 879-885.

Jones, M. C. and Faddy, M. J. (2003). A skew extension of the ¢ distribution, with applications.
Journal of the Royal Statistical Society, B, 65, 159-174.

Kelker, D. (1970). Distribution thoery of spherical distributions and a location-scale parameter

generalization. Sankhya, 32, 831-860.

26



Kimber, A. C. (1985). Methods for the two-piece normal distribution. Communications in Statistics

— Theory and Methods, 14, 235-245.

Loperfido, N. (2002). Statistical implications of selectively reported inferential results. Statistics
& Probability Letters, 56, 13-22.

Meng, X. L. and Wong, W. H. (1996). Simulating ratios of normalising constants via a simple
identity: a theoritical exploration. Statistica Sinica, 6, 831-860.

Mudholkar, G. S. and Hutson, A. D. (2000). The epsilon-skew-normal distribution for analyzing

near-normal data. Journal of Statistical Planning and Inference, 83, 291-309.

Sahu, S. K., Dey, D. K. and Branco, M. D. (2003). A new class of multivariate skew distributions

with applications to Bayesian regressian models. The Canadian Journal of Statistics, 31, 129-150.

Spiegelhalter, D. J., Thomas, A. and Best, N. G. (1996) Computation on Bayesian graphical models.
In Bayesian Statistics 5, (Eds. J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith).
Oxford: Oxford University Press, pp. 407-426.

Theodossiou, P. (1998). Financial data and the skewed generalized T' distribution. Management
Science, 44, 1650-1661.

27



b =1 0y =2

0.3

0.2

1 =1

0.1

0.0

0.3

0.2

01 =2

0.3

0.2

P Ie)

<,
2
Il
(S
00 o1

&
o
)
=)
o
N
3
&
o
o
=)
a
N
S
&
o
o
=)
o
N
3

/ kY
SN
3 CAG
L Y —— Normal
I/ \: Ku(Y) = 0.12
Ku(Y) = 0.3(
o Ku(Y) = 0.43
> S
=
@
=}
34
A o
&
g_
)
=
T T T T T
4 -2 0 2 4
Y

Figure 2: Plot of the density functions of SNpew (0, 02, (g;)) where 6; = —d2 and Var(Y) = 1.
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Figure 3: Plots of the density functions of various skew-normal distributions. All distributions are scaled

to have zero mean, unit variance and Sk(Y) = 0.5.
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Figure 4: Plots of the skewness measure Sk(Y") against d. Dashed line is for SN¢pp; solid line is for SNgqy,
with 0% = 0.01 and the dotted line is for 0® = 1. Note that skewness of SNy, does not depend on o,
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Figure 5: Surface and contour plots of the skewness measure Sk(Y) of SNpew against §; and J, for two

different values of o2.
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Figure 6: Plots of kurtosis versus skewness Sk(Y); dashed line is for SNtpn, solid line is for SNgqy,, and

dotted line is for the maximum achievable kurtosis of SNpew.
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Figure 7: Marginal posterior densities of 32, 34 and s for the non-academic scores example.
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