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Abstract

Spatial prediction of exposure to air pollution in a large city such as Santiago de

Chile is a challenging problem because of the lack of a dense air-quality monitoring

network. Statistical spatio-temporal models exploit the space-time correlation in the

pollution data and other relevant meteorological and land-use information to generate

accurate predictions in both space and time. In this paper, we develop a Bayesian

modelling method to accurately predict hourly PM2.5 concentration in a one kilome-

ter high resolution grid covering the city. The modelling method combines a spatio-

temporal land-use regression model for PM2.5 and a Bayesian calibration model for the

input meteorological variables used in the land-use regression model. Using a 3-month

winter-time pollution data set, the output of sample validation results obtained in this

paper show a substantial increase in accuracy due to the incorporation of the linear

calibration model. The proposed Bayesian modelling method is then used to provide

short-term spatio-temporal predictions of PM2.5 concentrations on a fine (one kilometer

square) spatial grid covering the city. Along with the paper we publish the R code used

and the output of sample predictions for future scientific use.

Keywords: spatio-temporal modelling; PM2.5 pollution; WRF model; forecasting.

1 Introduction

Atmospheric air pollution from anthropogenic sources is of great concern due to its estab-

lished harmful effects on human health [19, 8]. Such health concerns are exacerbated in all

mega-cities around the world due to the large volume of human activities involved, such as

transportation and energy usage.

Particulate matter with diameters less than 2.5 µm (PM2.5), are tiny enough to pen-

etrate the lungs and pulmonary alveoli, increasing the risk of premature mortality due to
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cardiopulmonary effects. Main sources of PM2.5 pollution are cars, thermoelectric power

plants, industrial and metallurgic processes, mining industry, and residential burning of

coal, wood and kerosene.

Santiago de Chile (SCL) is affected by severe air pollution episodes due to its unique

geographical location and climate. The city is located in a land depression called Santiago

basin, which is surrounded by four main mountain ranges. Because of this, ventilation

and air circulation are prevented efficiently, causing the pollutants to be contained inside

the basin for long periods of time. In addition, air pollution is vertically spread over a

very shallow layer of just several hundred meters because of large-scale subsidence from the

south Pacific anticyclone located along the Chilean coast. These two factors work together

in a nexus to produce very high levels of PM2.5 in the city throughout the year, especially

in winter months from June to August [23, 16, 45, 22], which are characterized by cold

temperatures, high humidity, and low pressures. The main purpose of this paper is to

estimate and predict hourly PM2.5 concentration levels at any given location within the

city.

Estimation of air pollution exposure in both space and time is a challenge as often

there are only few active monitors which record air pollution continuously without fail

for long periods of time. For example, in SCL there are only eleven active monitoring

stations. Hence, sound statistical methods are needed to estimate and forecast pollution

levels in areas away from the monitoring sites. There has been much recent activity in

methodological developments in this area. Generic models for analyzing spatio-temporal

data were developed by [6, 26, 24, 54, 50, 4, 7, 3, 30].

Space-time statistical modelling for short-term prediction of PM10 (particulate matter

less than 10µm in diameter) and PM2.5 has been proposed by [56, 46, 48, 40] and [38]. [10]

and [41] proposed hierarchical space time models for the calibration of PM10 at heteroge-

neous monitoring networks. [42, 39], and [37] developed dynamical models for predicting

ozone levels. Recently, [1] and [25] developed R packages for the Bayesian space time

modelling of pollution data.

Several modelling efforts for estimating air pollution exposure in SCL are based on

neural network models ([33]; [9], [32]). In particular, [33] developed an integrated artificial

neural network model to forecast the maximum daily mean value of PM10 concentration

at five monitoring stations in SCL, and [32] used a feed forward neural network to forecast

critical episodes of PM2.5 in the monitoring station with the highest concentration values

(Cerro Navia) using historical hourly values of PM10 and PM2.5 concentrations from nearby

stations, weather variables, and a ventilation factor. [9] proposed a hybrid model combining

autoregressive integrated moving average (ARIMA) and artificial neural network structures,

for predicting the PM10 concentrations at Temuco city monitoring station, in Chile in 2006.

[43] and [44] proposed a deterministic chemical based forecasting model for PM2.5 using

its high correlation with carbon monoxide as a tracer to predict critical night episodes.

2



A multivariate approach has been considered by [29] where they proposed a methodology

based on a system of dynamic multiple linear equations that incorporates hourly, daily and

seasonal characteristics to predict hourly PM2.5 concentrations for eleven meteorological

stations in SCL.

Air pollution exposure is highly affected by the prevailing weather and as a result,

meteorological variables often highly correlate with air pollution levels, see e.g. [39, 55]. It

is then natural to exploit these high correlations for modelling and predicting air pollution

levels. Similar to air pollution concentrations, meteorological variables are only monitored

at a handful of sites. However, regional weather forecasts can provide the meteorological

information at locations where observations are not available. The Weather Research and

Forecasting (WRF) model is a regional numerical weather prediction system that is used

both for atmospheric operational forecasting and research. The model is freely available,

flexible and computationally efficient, and offers advances in physics, numerics, and data

assimilation contributed by the research community. It provides high-resolution forecasts

using detailed databases for land use, topography and soil type. In this study we use version

3.6.1 of the WRF model [47]. WRF model forecasts at un-monitored sites are subject to

uncertainty. Were we to use the high-resolution forecasts from the WRF model, we would

be ignoring the uncertainty in them. The resulting air pollution estimates will also have

unquantified uncertainty, which will reduce its usability.

This paper addresses the above issues in uncertainty quantification by adopting a

Bayesian linear model linking the observed and forecasted meteorological variables by the

WRF model. The Bayesian model enables us to assess the uncertainty of the meteorolog-

ical variables forecasts at each of the corners of a 1-kilometer square grid. The calibrated

forecasts are then used in a spatio-temporal regression model for air pollution exposure.

Numerical cross-validation results obtained in this paper show better accuracy for the pre-

dicted air pollution exposure values using this proposed new method. The resulting model

is able to forecast PM2.5 concentrations at each corner of a 1-kilometer square grid.

The remainder of the article is organised as follows. Section 2 presents exploratory

analysis of the study data set. Modelling details are provided in Section 3. Section 4

presents the main results. Conclusions and further developments are presented in Section 5.

2 Exploratory data analysis

2.1 PM2.5 data description

We consider hourly mean PM2.5 data obtained at n = 11 monitoring sites in SCL during

three winter months, from June 1, 2011 to August 16, 2011. The choice of this period was

motivated by the fact that PM2.5 is higher in winter months and thereby ensuring a greater

level of data availability. The monitoring sites belong to the national air quality infor-
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mation system network (Sistema de Información Nacional de Calidad del Aire (SINCA),

http://sinca.mma.gob.cl) of Chile. Most of the monitoring sites are located in the center

of the city as shown in Figure 1. The figure also shows the mountains surrounding the

city, which impede air ventilation, especially during winter months, and the major roads

carrying the bulk of the traffic in the city.

[Figure 1 about here.]

The boxplots in Figure 2 show the distribution of PM2.5 concentrations by day of the

week (a), by hour (b), and by monitoring station (c). Figure 2 (a) shows higher levels of

PM2.5 during the middle of the week when business activities are at their highest and the

levels go down during the weekend. This indicates that there may be a weekday/weekend

effect. A diurnal cycle is seen in Figure 2 (b). The boxplots together display a bi-modal

pattern with significant peaks during the morning rush hour, 7-10AM and also during the

night between 10PM and 2AM. This can be associated with the topography and the per-

sistence of subsidence conditions in the winter months (June-August) that induce thermal

inversions [15] and weak winds in the morning and evening, preventing the dispersion of

pollutant concentrations and leading to the accumulation of gases (CO, NOX and VOCs)

and aerosols (PM10 and PM2.5) in the air (see [35, 12, 53, 32, 55, 28] for more details). It is

important to note that the high concentrations of PM2.5during the night and early morning

hours may be also due to residential wood burning.

The site-wise boxplots in Figure 2 (c) show that the most polluted locations in Santiago

are the monitoring sites 5 (Pudahuel) and 8 (Cerro Navia). See also Table 1 where the site-

wise summary statistics are presented along with the station names. Figure 1 shows that

both stations 5 and 8 are located in the North-West area of Santiago, which is characterized

by the presence of thermoelectric and copper smelter plants.

The high levels of the hourly PM2.5 concentrations in the 11 monitoring stations lead

to high levels of the daily averages which often exceed the threshold of 50 µg/m3 fixed

by the Chilean Ministry of the Environment and 25 µg/m3 set by WHO (World Health

Organization). Fig. 3 shows the daily averages for the 11 monitoring stations. Values

for the three stations: 5-Pudahuel, 7-El Bosque, 9-Cerro Navia, plotted in the colors light

blue, yellow, and grey respectively, show a high number of exceedances beyond the Chilean

threshold of 50 µg/m3. This figure also shows that, except for the station 3- Las Condes

(green color) the PM2.5 levels in all the other stations exceed this threshold often during the

peak pollution episodes seen as the peaks in the graph. Moreover, the WHO limit is seen

to be exceeded at all the stations except for a few low-pollution days seen as the troughs

in the graph.

[Figure 2 about here.]

[Figure 3 about here.]
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[Table 1 about here.]

2.2 Meteorological covariates

Pollution levels are often associated with relevant meteorological variables. For example,

low temperatures in the winter period increase the demand for residential wood-burning

heating in Santiago city, leading to increased pollution levels; the dispersion of pollution

particles depends on wind speeds, with higher values causing a more rapid dispersion [29];

and the relative humidity affects the particle-growth by hydration [5] and showed a large

role explaining PM variations in Santiago [55]. In our study we have access to temperature,

relative humidity (RH) and wind speed observations at the 11 monitoring sites. Table 2

shows the summary statistics for these variables.

The selection of these covariates have been motivated by the availability of these vari-

ables in each monitoring station, and according to other studies of air pollution in Santiago

([20], [15], [44]). [15, 55, 29] determined a negative correlation between temperature and

wind speed with PM2.5 and a positive correlation between relative humidity and PM2.5

but a weak negative correlation was found for wind direction. Other authors have also

considered weather variables to model the PM2.5 in Santiago [35, 43, 44, 28].

[Table 2 about here.]

The use of meteorological variables, however, poses a problem using our hierarchical

model in the prediction of pollution concentrations at locations where no meteorological

observations are available. To overcome this problem the WRF model output can be

used instead of meteorological observations, given that the WRF model can predict the

meteorological variables on a regular grid at different spatial resolutions. We first describe

below the WRF model configuration used in this study.

2.3 WRF model configuration

The WRF model was run using the fully compressible and non-hydrostatic options. The

simulations were performed using 4 nested domains and 50 vertical levels. Results from

the domain with higher horizontal resolution (d04 at 1 km), covering the city of Santiago,

was used in the study. The Final (FNL) analysis run by NCEP (National Centers for

Environmental Prediction) four times per day (0, 6, 12 and 18 UTC), at 1 degree x 1 degree

horizontal resolution was used as initial and boundary conditions for the WRF simulations

every 6 hours. The WRF simulation started on 1st June 2011 at 00 UTC and ended on

31st August 2011 at 23 UTC for the area included in the latitudes (−32◦26′59′′;−34◦8′6′′)

and longitudes (−69◦58′23′′;−71◦53′35′′). WRF outputs were saved every 1 hour.

A nudging [49] analysis was applied over the period of the simulation to avoid the

regional simulation to depart too much from the large-scale atmosphere provided by the
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FNL. Nudging is a technique used in dynamical downscaling to improve the representa-

tion of atmospheric fields inside a regional atmospheric or climate simulation. It imposes

a constraint in the interior grid-points of the regional simulation toward the large-scale

atmospheric fields, by adding a term to the primitive equations based on the difference

between the inside atmospheric regional fields and the large-scale fields.

The simulation was performed using the Rapid Radiative Transfer Model for a gen-

eral circulation model (RRTM-G) scheme for long-wave and short-wave radiation [18],

the Mellor-Yamada-NN 2.5 level turbulent kinetic energy (TKE) scheme to resolve the

planetary boundary layer processes [31], the Noah land surface model [52] to solve the

land-surface interaction in all domains, and the WSM 6-class graupel scheme [17] to solve

microphysics in domains 3 and 4.

Figure 4 shows the 2 m temperature (a), relative humidity (b), and the 10 m wind

speed from the WRF model in August 16th at 8:00 local time (LT) and 13:00 LT. Figure 5

shows strong positive correlations between some observed meteorological variables (such as

temperature and relative humidity) and WRF predictions.

[Figure 4 about here.]

[Figure 5 about here.]

3 Modelling details

3.1 Hierarchical models

The main aim of the space-time regression approach is to model and analyze random obser-

vations of PM2.5 at location s and time t. The pollution observations are modeled on the

square-root scale in order to encourage normality and stabilize the variance [39]. Hence, we

use the notation Y (s, t) to denote the square-root of the observations at location s and at

time t which we model using a set of p covariates x(s, t). Here we take the following covari-

ates: the calibrated WRF predictions for the three meteorological variables (temperature,

relative humidity, and wind speed), the mixing layer, the altitude, the distance from the

nearest road, and the hour of the day. We will explain the details of the calibration proce-

dure used for the meteorological variables in the next Section. The hierarchical models are

specified by:

Y (s, t) = U(s, t) + ε(s, t) (1)

where U(s, t) is a structured spatio-temporal process that we specify using a second level

hierarchical specification and the non-spatial random error term ε(s, t) is assumed to have

a zero mean and constant variance σ2ε . We envision this error term to be the measurement

error, although there are other possible interpretations, see, e.g., Chapter 6 in [2] for a

discussion of the nugget term in spatio-temporal models.
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The structured process U(s, t) is specified by three main components: (i) ρU(s, t − 1)

accounting for temporal correlation for an unknown value of the correlation parameter ρ,

(ii) x(s, t)′β explaining large scale variation due to the p covariates at the same time point

and the p− dimensional vector β denotes the regression coefficients; and (iii) η(s, t), a

random space-time intercept that cannot be accounted for by the two previous terms. We

do not consider a spatially varying temporal correlation coeffficient, ρ(s), as our data set

from only n = 11 sites is not reach enough to estimate such parameters in the presence of

the unobserved U(s, t).

The term U(s, t) also provides the spatial smoothing in the model and we assume an

independent in time Gaussian process model for it. Thus, the second stage hierarchical

specification is given by:

U(s, t) = ρU(s, t− 1) + x(s, t)′β + η(s, t). (2)

We have collected data from n = 11 sites denoted by si, i = 1, . . . , n and T time

points denoted by t = 1, . . . , T . Hence we assume the model equations (1) and (2) for

each of the nT data points si, i = 1, . . . , n and t = 1, . . . , T . We define the notations:

Yt = (Y (s1, t), . . . , Y (sn, t)) and Ut = (U(s1, t), . . . , U(sn, t)), εt = (ε(s1, t), . . . , ε(sn, t)),

ηt = (η(s1, t), . . . , η(sn, t)) and Xt = (x′(s1, t), · · · ,x′(sn, t))′ . With the above notations,

we re-write the model equations (1) and (2)

Yt = Ut + εt, εt ∼ N(0, σ2εIn), (3)

Ut = ρUt−1 + Xtβ + ηt, ηt ∼ N(0,Ση) (4)

where In is the identity matrix of order n and the elements of the matrix Ση are specified

using a Gaussian process as follows. We assume that Ση = σ2ηSη where σ2η is the site-

invariant common spatial variance and the ith row and jth column element of the correlation

matrix Sη is obtained using the Matérn correlation function defined as:

Sη(si, sj ;φ, ν) =
1

2ν−1Γ(ν)
(2
√
ν ‖ si − sj ‖ φ)νKν(2

√
ν ‖ si − sj ‖ φ), φ > 0, ν > 0, (5)

where Kν(·) is the Bessel function of the second kind and φ and ν are parameters governing

the strength and smoothness of the spatial correlation. In our implementation we take

ν = 0.5 which corresponds to the popular exponential correlation function. This model has

been implemented in the R language in the spTimer package [1]. Our implementation will

be based on this package too.

Bayesian model checking and verification of the model assumptions proceed by using

the posterior predictive distributions, see e.g. [14]. Here one simply simulates replicated

data from the fitted model and then compares those with the observed data. These authors

also define Bayesian p-values based on the posterior predictive distributions. In this article,

we do not adopt those formal Bayesian approaches as here the main objective is prediction
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rather than model choice. We use leave one out cross validation approaches to validate

and compare different modelling approaches in Section 4. However, before discussing those

results we first provide the prediction details using our models.

3.2 Prediction details

Prediction at a new location s0 at any time point t must be performed using the model

equations (1) and (2), i.e.,

Y (s0, t) = U(s0, t) + ε(s0, t)

U(s0, t) = ρU(s0, t− 1) + x(s0, t)
′β + η(s0, t).

Here we obtain the posterior predictive distribution of Y (s0, t) given all the observed

data and covariate values from the n data sites and also the prediction location s0. How-

ever, as mentioned above, the values x(s0, t) are not available as we only have observed

meteorological variables at the 11 data sites only. To overcome this problem, we assume a

linear calibration model as follows. For each of the three meteorological variables, xj(s, t),

j = 1, 2, 3 we assume that

xj(si, t) = γ0j + γ1jx
(M)
j (si, t) + ω(si, t) (6)

where γ0j and γ1j are intercept and slope for the jth meteorological variable, j = 1, 2, 3

and ω(si, t) is a space-time error term and x
(M)
j (si, t) is the known WRF output for the

jth meteorological variable at location si and at time t. In our implementation, we have

adopted an independent error distribution in space and time for ω(si, t) since we do not

want further smoothing of the WRF model output. That is, for the error term ω(s, t), we

do not assume any spatio-temporal dependence structure as we have assumed for η(s, t)

in (2).

Consequently, we assume that ω(si, t) ∼ N(0, σ2ω) independently for each i = 1, . . . , n

and t = 1, . . . , T . We assume independent vague prior distribution N(0, 104) for γ0j and

γ1j and assume a proper inverse gamma distribution with parameters 2 and 1 for σ2ω.

We then work out the posterior predictive distribution of xj(s0, t) given all the observed

meteorological data xj(si, t) for i = 1, . . . , n and t = 1, . . . , T . From the posterior predictive

distribution we obtain the mean and the 95% credible intervals, which we send to the

pollution model (2) for assessing uncertainty due to the uncertainties in the model (6).

Our proposed prediction method runs algorithmically in two-steps as follows. In the

first step, we fit the Bayesian linear model (6) and obtain samples xj(s0, t)
(`), for each s0

and t, and for each ` = 1, . . . , L where L is a large number, 5000 in our implementation.

We then find summary statistics, i.e. the mean and the 95% credible limits from these

samples and use those in the pollution model (2). Again we note that we perform this

independently for each of the three meteorological variables separately.
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In the second step, we use the spTimer package to fit the full spatio-temporal model.

Once that model fitting has been performed, we go on to do the PM2.5 predictions at each

of the corners of the 1-kilometer square grid.

4 Results

4.1 Bayesian calibration of temperature, relative humidity and wind speed

We separately fitted the Bayesian linear model (6) (using the R package spBayes; see [11]),

for each of the three meteorological variables, temperature, relative humidity and wind

speed using the actual observed data from the monitoring stations and the outputs from

the WRF model. The parameters of the model are estimated using the data for the period

between June 1st, 2011 and August 15th, 2011 and the resulting fitted model is used to

forecast the values for the next 24 hours (August 16, 2011).

Table 3 shows the Root Mean Square Error (RMSE), Bias, correlation (r) and Coverage

percentage (Cov) for each monitoring station and each meteorological variable (wind speed,

temperature, and relative humidity) for the 24h forecast in August 16th. The best correla-

tion between observations and fitted values is obtained for temperature in all stations, and

the best fitting (in terms of RMSE and BIAS) is shown in stations 4 (Parque O’Higgins)

and 8 (Cerro Navia). This can be explained by the strong linear correlation between obser-

vations and WRF outputs as shown in Fig. 4a). A similar behavior (although with lower

correlation coefficients) has been obtained for the relative humidity, except for stations 3

(Las Condes) and 9 (Puente Alto). This can be related to the fact that both stations are

characterized by the highest values of altitude (768 and 670 meters respectively).

Our results are comparable to those obtained by [44] who found a higher correlation for

temperature than for wind speed at Cerro Navia station 3. Other studies have also found

a large bias in wind speed forecasts from WRF in complex terrain in other parts of Chile

and the world [36, 21, 27, 34].

[Table 3 about here.]

In order to illustrate the calibration results for an individual station, we chose the

Pudahuel station, since this station showed the highest mean PM2.5 concentration (see

Table 1). Figure 6 shows the calibration plots for temperature, RH and wind speed from

August 1st to 15th. In general, the model calibrated values (red lines) are much closer to

observations (black lines) than the uncalibrated (raw) WRF model output (blue lines).

Henceforth, the model fitted values for the three meteorological variables, wind speed,

temperature, and relative humidity will be used as the calibrated values and the raw WRF

model output will be referred to as the uncalibrated values. In order to propagate the

uncertainty in the calibration values, we work not only with the mean calibrated values but
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also with the 2.5% lower credible limit (LCL) and the 97.5% upper credible limit (UCL)

of calibrated meteorological variables. The hierarchical models given by (1) and (2) with

the un-calibrated and the calibrated (mean, LCL and UCL) WRF weather variables will

be henceforth denoted by Un-CAL, Mn-CAL, Lo-CAL and Up-CAL, respectively.

[Figure 6 about here.]

4.2 Model estimation

In this section we show the parameter estimates of the Bayesian hierarchical model for

predicting the PM2.5 concentration in SCL using the R package spTimer from June 1st to

August 15th, 2011. We consider spatial and/or temporal exogenous variables (the hour

of the day as a factor, the altitude, the temperature, the distance to the principal road,

the atmospheric boundary layer height, wind speed and relative humidity) as covariates in

the matrix X(s, t). The four Bayesian models, Un-CAL, Mn-CAL, Lo-CAL and Up-CAL,

have been fitted using MCMC and Table 4 provides the Bayesian predictive model choice

criteria (PMCC) developed by [13]. The PMCC criteria clearly select the Mn-CAL model

which uses the mean calibrated WRF weather variables.

Table 5 shows the estimated parameters for the four models. The variations in the

parameter estimates for the three models based on the calibrated weather variables show

the effect of uncertainty in using the calibration method. For all the parameters we observe

that the estimates do not vary a great deal and they all point to similar relationships

between the PM2.5 and the other covariates. As expected, the PM2.5 concentration is

inversely correlated with temperature, wind speed, boundary layer height and altitude.

Similar results have been obtained for temperature and wind speed by [29], while the

negative correlation between pollution and the mixing layer is explained by [51] from the

meteorological point of view. By comparing the un-calibrated (Un-CAL) with the mean-

calibrated model (Mn-CAL) we find a large difference in the estimated coefficient for wind

speed. The estimates imply that the correlation with wind speed is stronger in the calibrated

model. The spatial correlation is seen to be very similar in the two models.

[Table 4 about here.]

The spatio-temporal prediction performance of the models at each monitoring station

has been assessed by implementing a leave-one-out cross-validation method for the period

from June 1st to August 15th, 2011. Table 6 shows the RMSE, BIAS, and the percentage

of coverage for the models using the un-calibrated and calibrated (mean) variables. As

expected, the values for these indexes are generally better for the model using mean cali-

brated variables for the meteorolgical variables. In particular, the RMSE is only lower for

UN-CAL for station 7 but for this station the BIAS is lower for Mn-CAL.

[Table 5 about here.]
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4.3 Temporal prediction

In order to show the forecast ability of the model, we made a 24h prediction at each moni-

toring station on day August 16th by using the PM2.5 data from June 1st to August 15th.

In Figure 7 (a) we can observe the correlation between observations and predictions using

calibrated and un-calibrated variables, whereas Figure 7 (b) shows the skill of the temporal

prediction for station 5 (Pudahuel), which was the most polluted location according to the

available observations. The figures show that the predictions are better for the model with

the calibrated variables, especially for values of PM2.5 concentrations between 15 and 25

µg/m3 (Figure 7a), and, with reference to station 5 (Pudahuel), the predictions obtained

with calibrated variables are much closer to the observations (Figure 7 b). These results

are confirmed by the residual analysis of Table 7, which shows the lowest values of RMSE,

MAE, MAPE, BIAS, rBIAS, and rMSEP for the model using the calibrated mean variables.

In particular, we note that the bias of the model is considerably reduced in this case.

[Figure 7 about here.]

[Table 6 about here.]

4.4 Spatio-Temporal Prediction

Figures 8 and 9 show the spatio-temporal PM2.5 prediction for August 16th at 8:00 and

13:00 LT, respectively, using a spatial resolution of 1km × 1km. We note that PM2.5 con-

centration is higher in the morning which is normally characterized by higher traffic and

lower temperature. In particular, Figure 8 (a) shows that the highest PM2.5 concentra-

tions are located in the North-West part of Santiago city where a large industrial sector is

established. As expected, standard deviations are lower in the spatial points close to the

monitoring stations (Figures 8b and 9b).

[Figure 8 about here.]

[Figure 9 about here.]

5 Conclusions

In this paper we have developed a hierarchical Bayesian land-use regression model for

predicting the hourly PM2.5 in conjunction with a calibration model for the covariates, given

by the meteorological WRF variables (wind speed, temperature, and relative humidity).

The results showed that the PM2.5 forecasts using calibrated meteorological outputs are

much more accurate than the predictions using un-calibrated ones. The proposed model is

able to make good predictions for the next 24 hours on a regular grid of 1km × 1km. We
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think these forecasts could be helpful to the local authorities to take decisions when high

levels of pollution are predicted in the day and in case the daily average forecast level exceed

the thresholds set by the national government and WHO for protecting the human health.

The ability of the model to produce good forecasts on fine spatial and temporal resolutions

make a significant contribution to the existing literature where most of the work focuses on

forecasting daily average levels in a temporal domain and/or on a coarse spatial grid. Also,

the proposed models resulting from the combination of the spatio-temporal hierarchical

Bayesian model with the calibration one, contributes methodologically to a new area of

research consisting on calibrating the covariates in a spatio-temporal approach.
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Table 1: Summary statistics of the PM2.5 data.
No. Station Min. 1st Qu. Median Mean 3rd Qu. Max. SD NA

1 La Paz 1.00 16.00 28.00 30.04 42.00 124.00 18.05 18
2 La Florida 1.00 14.00 28.00 34.44 48.00 152.00 25.23 8
3 Las Condes 1.00 10.00 18.00 20.67 29.00 78.00 14.38 10
4 Parque O’Higgins 1.00 16.00 31.00 36.37 52.00 154.00 25.90 5
5 Pudahuel 1.00 13.00 33.00 45.95 62.00 364.00 48.60 16
6 Cerrillos 1.00 17.00 36.00 43.98 64.00 187.00 33.96 5
7 El Bosque 1.00 15.00 33.00 41.92 58.00 241.00 36.55 11
8 Cerro Navia 1.00 14.00 36.00 51.47 73.00 346.00 50.94 9
9 Puente Alto 1.00 12.00 24.00 27.30 38.00 119.00 19.75 4
10 Talagante 1.00 11.00 27.00 33.66 49.00 202.00 28.54 4
11 Quilicura 1.00 13.00 29.00 33.99 47.00 210.00 27.59 11
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Table 2: Summary statistics for the meteorological variables.
Covariates Min. 1st Qu. Median Mean 3rd Qu. Max. SD NA

Relative Humidity 0.00 58.08 74.08 69.96 84.71 100.00 18.48 573
Temperature -4.27 4.96 7.66 8.26 11.17 26.83 4.96 73
Wind Speed 0.00 0.53 0.91 1.03 1.35 6.73 0.69 38
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Table 3: Calibration results for the meteorological variables: wind speed, temperature, and
relative humidity.

Wind Speed Temperature Relative Humidity
St. RMSE Bias r Cov RMSE Bias r Cov RMSE Bias r Cov
1 1.16 -0.26 0.44 100.00 3.86 -3.78 0.96 100.00 12.50 9.03 0.87 100.00
2 1.46 -0.46 0.11 100.00 2.36 -2.15 0.95 100.00 11.21 7.37 0.90 100.00
3 0.55 0.31 -0.04 100.00 5.95 -5.61 0.84 50.00 20.28 14.69 -0.01 79.16
4 1.41 -0.36 0.15 100.00 1.66 -1.32 0.94 100.00 10.29 5.27 0.85 100.00
5 1.14 -0.13 0.11 100.00 3.49 -3.35 0.95 100.00 17.46 14.81 0.83 87.50
6 1.62 -0.92 0.31 100.00 3.54 -3.42 0.95 100.00 9.78 2.85 0.84 100.00
7 1.37 -0.69 0.17 100.00 2.08 -1.77 0.95 100.00 10.21 5.71 0.87 100.00
8 1.63 -0.34 0.09 100.00 1.73 -1.36 0.96 100.00 10.60 5.41 0.88 100.00
9 1.73 -1.05 0.19 100.00 4.08 -3.89 0.94 95.83 17.81 13.63 0.04 87.50
10 0.66 0.50 0.32 100.00 2.67 1.87 0.69 95.83 7.65 2.07 0.56 100.00
11 0.87 0.06 0.35 100.00 3.66 -3.46 0.91 100.00 15.02 11.21 0.92 100.00
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Table 4: Model Choice Criteria for the Un-CAL, Mn-CAL, Lo-CAL and Up-CAL models.
Un-CAL Lo-CAL Mn-CAL Up-CAL

Goodness of fit 13581 13569 13551 13713
Penalty 10140 10149 10136 10132
PMCC 23721 23718 23687 23845

Table 5: Parameter estimates for the four different models.
Un-CAL Mn-CAL Lo-CAL Up-CAL

Parameters Mean SD Mean SD Mean SD Mean SD
Intercept 2.1919 0.1081 3.5259 0.2200 2.3540 0.1128 4.3642 0.3161
Hour (6:00-12:00) 0.1669 0.0305 0.1685 0.0323 0.1704 0.0299 0.1680 0.0328
Hour (13:00-16:00) -0.0113 0.0416 -0.0109 0.0436 -0.0066 0.0419 -0.0106 0.0437
Hour (17:00-23:00) 0.6754 0.0309 0.6790 0.0330 0.6762 0.0303 0.6734 0.0335
Mixing Layer -0.4365 0.0412 -0.4358 0.0426 -0.4451 0.0414 -0.4451 0.0427
Wind Speed -0.1095 0.0195 -1.1659 0.1745 -1.0224 0.1633 -0.9867 0.1658
Altitude -0.0011 0.0001 -0.0011 0.0001 -0.0010 0.0001 -0.0010 0.0001
Temperature -0.0116 0.0037 -0.0122 0.0041 -0.0117 0.0039 -0.0123 0.0040
Relative Humidity -0.0050 0.0007 -0.0095 0.0012 -0.0092 0.0012 -0.0096 0.0012
Distance to road -0.0007 0.0013 -0.0005 0.0013 -0.0006 0.0014 -0.0006 0.0013
ρ 0.7964 0.0044 0.7960 0.0042 0.79620 0.0044 0.7961 0.0045
σ2
ε 0.0096 0.0007 0.0098 0.0007 0.0098 0.0008 0.0097 0.0008

σ2
η 1.1105 0.0139 1.1068 0.0141 1.1114 0.0156 1.1124 0.0143

φ 0.1368 0.0028 0.1375 0.0032 0.1370 0.0029 0.1361 0.0031
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Table 6: Station-wise cross-validation performance of the Un-CAL and Mn-CAL models.
Un-CAL Mn-CAL

Station RMSE BIAS Coverage (%) RMSE BIAS Coverage (%)

1 9.66 8.40 95.83 6.10 3.71 100.00
2 7.68 6.05 100.00 6.24 2.35 100.00
3 3.82 0.72 100.00 3.64 -1.49 100.00
4 10.20 9.05 100.00 7.03 4.38 100.00
5 16.75 15.81 45.83 10.81 8.41 66.67
6 9.28 7.56 100.00 6.85 1.88 100.00
7 7.90 5.59 100.00 8.14 1.23 100.00
8 11.49 9.80 58.33 8.67 3.05 75.00
9 6.13 4.97 100.00 5.46 1.69 100.00
10 27.26 25.77 62.50 20.05 19.23 79.17
11 12.18 11.21 95.83 7.35 4.62 100.00
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Table 7: Residual analysis for the temporal prediction.
Model RMSE MAE MAPE BIAS rBIAS rMSEP

Un-CAL 9.57 7.94 278.97 7.29 0.81 0.82
Mn-CAL 7.09 5.60 202.36 2.40 0.27 0.78
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Figure 1: Google map representation of Santiago city and the location of the 11 SINCA
air-quality monitoring sites.
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(a) (b) (c)

Figure 2: Boxplot of PM2.5 by day of the week (from Monday=1 to Sunday =7) (a), by
hour (with midnight=0) (b), and by monitoring station (c).
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Figure 3: Time series of the daily average PM2.5 concentrations for the 11 stations. The
dashed horizontal line shows the the upper limit at 50 stipulated by the Chilean Government
and the solid horizontal line shows the limit suggested by the WHO.
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(a) (b) (c)

Figure 4: WRF model output for August 16th at 8:00 LT and 13:00 LT (bottom) for:
temperature (a), relative humidity (b), and wind speed (c).
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(a) (b) (c)

Figure 5: Scatter plots of 2 m temperature (a), 2 m relative humidity (b), and 10 m wind
speed (c) from observations and WRF forecasts.
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(a)

(b)

(c)

Figure 6: Calibration plots for the period August 1st to 15th at Pudahuel monitoring
station: Panel (a) temperature, panel (b) relative humidity panel (c) wind speed. Obser-
vations are represented by black lines, the blue lines represent the WRF simulations, the
red lines represent the mean fitted curve, and green dashed lines represent the 2.5% and
97.5% quantiles.
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(a) (b)

Figure 7: (a) Correlation plot between observations and predictions: calibrated predictions
(red points) and un-calibrated predictions (black points). (b) Temporal prediction for
Pudahuel. Black line shows the observations; blue line shows the predictions using model
Un-CAL; red line shows the predictions using model Mn-CAL. The green dashed lines show
the predictions from the Lo-CAL and Up-CAL models, respectively.
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(a) (b)

Figure 8: Spatio temporal prediction of PM2.5 concentration on August 16th at 8:00 (a),
and its standard deviation (b).
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(a) (b)

Figure 9: Spatio temporal prediction of PM2.5 concentration on August 16th at 13:00
CLST (a), and its standard deviation (b).
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