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Abstract

Often the dependence in multivariate survival data is modeled through an individual level
effect called the frailty. Due to its mathematical simplicity the gamma distribution is often used
as the frailty distribution. However, it is well known that the gamma distribution for frailty has
many drawbacks. For example, it weakens the effect of covariates. To overcome such drawbacks
more heavy tailed distributions are needed to model the frailty distribution, e.g. the positive
stable distribution. In this paper we develop a class of log-skew-t distributions for the frailty.
This class includes the log-normal distribution along with many other heavy tailed distributions,

e.g. log-Cauchy or log-t as special cases.

Conditional on the frailty, the survival times are assumed to be independent with propor-
tional hazard structure. The modeling process is then completed by assuming an appropriate
baseline hazard function. There are many prior processes for modeling the baseline hazard. An
attractive choice here is a correlated prior process, which offers a great deal of flexibility. We
consider such a process, which jumps according to a time-homogeneous Poisson process. We de-
velop Bayesian methods to obtain posterior inference using a variable dimensional Markov chain

Monte Carlo method. We illustrate and compare our methods using two practical examples.
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1 Introduction

Multivariate survival data arise when each study subject may experience multiple events or
when study subjects are clustered into groups. Examples of such data include the recurrence

times of a certain disease and the survival times of members of a family or litter.

Suppose that the survival time of the jth subject (j = 1,...,m) in the ith group (i =
1,...,n) is denoted by T;;. The conditional hazard function of T;; is often modeled as the
product of: (i) an individual level random effect called the frailty, (ii) a baseline hazard function,
and (iii) a proportional hazard function, which takes into account the effect of the covariates.
That is, given the covariates z;; and the unobserved frailty parameters w;, the hazard function

is modeled as
h(tij|zij, wi) = w; ho(ti;) exp(Bzi;) (1.1)

where h,(-) is the baseline hazard function and 3 is the regression parameter. Observe that the
frailty parameter w; can be specified equivalently by the one-to-one transformation b; = log(w;)

as well.

The main focus of the current paper is to develop flexible models for the frailty and the

baseline hazard function. In particular, we adopt the following two new approaches to modeling.

e We develop a flexible class of log-skew-t frailty distribution for modeling the dependence.
The class includes the log-normal distribution along with other heavy tailed distributions
such as the log-t distribution as special cases. As is well known, inferences based on models

that use heavy tailed frailty distributions are more robust to outliers.

e We propose a correlated prior process for the baseline hazard function, which jumps ac-
cording to a time-homogeneous Poisson process. Thus the number and positions of the

jump times are not fixed in advance, but are estimated using data and prior assumptions.

The frailty is a random effect common to the individuals of the same group or cluster. See

for example the recent book by Ibrahim, Chen and Sinha (2001) for general introduction and



early references. A convenient choice of the frailty distribution is the gamma distribution since it
provides conjugate sampling distributions for Gibbs sampling (Gelfand and Smith, 1990). How-
ever, it has many drawbacks, see e.g. Hougaard (1986). For example, the gamma distribution
attenuates the covariate effect. To overcome such problems, Hougaard (1986) uses the positive
stable frailty distributions, which have been followed up by Qiou, Ravishanker and Dey (1999)

in the Bayesian context.

In this article we consider an alternative class of frailty distributions using the log-skew-¢
distributions. The class before the transformation reduces to the family of normal (¢ or Cauchy)
distributions for particular values of the parameters. On the other extreme it behaves as a
half-normal (half-¢ or half-Cauchy) distribution by placing all its mass on the positive side of
the real line. Thus the family of distributions is quite flexible and general, and the existence of
the mean and variance of the frailty distribution is not assumed since the degrees of freedom of

the t-distribution can be less than two.

A suitable stochastic process needs to be considered for the baseline hazard function. Several
parametric and non-parametric models are available, see e.g. Sinha and Dey (1997) for a review.
In this article we adopt a piecewise constant baseline hazard function. This choice is popular
when modeling univariate survival data, see for example Gamerman (1991), Arjas and Gasberra

(1994) and McKeague and Tighiouart (2000).

The correlated prior process imposes smoothness on the baseline hazard function in adjacent
intervals. In particular, we generalize a first order autoregressive process considered in Sahu et
al. (1997). In addition, we assume that the endpoints of the interval themselves form a time-
homogeneous Poisson process. This introduces further flexibility since the number of endpoints

where jumps are allowed to occur is left unknown.

The full Bayesian model is rather complex and does not allow fitting and comparison using
analytic methods. The straightforward Gibbs sampler is also not able to handle the computa-
tions since the parameter space is of varying dimension. Thus we develop Bayesian computation

methods using the reversible jump MCMC method, see for example Green (1995).

A natural next step after Bayesian model fitting is to investigate the issues relating to model
adequacy and model choice. Here we adopt familiar predictive Bayesian model choice criteria
and adequacy checks for comparing different models. In particular, we use the pseudo-Bayes

factor, see e.g. Geisser and Eddy (1979) for model comparison.



The remainder of the article is organized as follows. Section 2 introduces the frailty dis-
tributions. The baseline hazard function is discussed in Section 3. The likelihood and prior
specifications are discussed in Section 4. Section 5 develops computing methods and may be
omitted without loss on a first reading. In Section 6 we provide two numerical examples. We

conclude with a few summary remarks in Section 7.

2 Frailty Models

2.1 Frailty Distributions

The popular gamma, frailty distribution assumes that w;, ¢ = 1,...,n are i.i.d. each with the

gamma density

fuln) = Fsw™ exp(-un), w >0, (2.1)

! is the unknown variance of the w;, and the strength of the association between the

Here n~

survival times is a non-increasing function of 7.

The positive stable distribution has been suggested as a suitable frailty distribution on the
ground that it preserves the proportional hazard assumption in the marginal model. A good
introduction to this distribution is given by Hougaard (2000). The distribution is specified by
its Laplace transform E [exp(—sW)] = exp(—s®*) where 0 < @ < 1. The components of the
multivariate survival distribution induced by the stable frailty are locally independent when

a = 1. Other values of a introduce dependence among the components.

The density of the positive stable distribution is non-standard. We adopt the version obtained

by Buckle (1995). See also Ravishanker and Dey (2000). The density is given by

awl/(e=1) 1/2 w a/(a-1) 1 a/(a—1)
fw|a) = 7/ exp — |—— — dy (2.2)
@ =T L 4w &)
where
do(y) = sin(ray + sq) Cos Y (a—1)/c
o= cosmy cos{m(a— 1)y + sa} ’

and s, = min(a,2 — a)w/2. It is well known that the mean and variance of the positive stable

distribution do not always exist. However, the mean and and variance of b = log(w) are available



in closed form and are given by
1 1 2
Eb)=—(—-1 1), Var()=( —= -1 —
0= (3 -1) v, Valt)= (2 -1)%
where () is the digamma function. These expressions will be useful when comparing the

different frailty distributions.

We contrast the above two frailty distributions with a new class of frailty distributions
called the log-skew-t distributions obtained by Sahu et al. (2001). We suppose that the frailty
parameters b;, (= logw;) ¢« = 1,... ,n are independent and identically distributed for every

group with the following density,

I («tL 2 —(r+1)/2
hdlv) = 2(1+52)1/2F(V/2()(?/7r))1/2 [1+,,(1b+52)]
T Q(b)(sx/%] (2.3)
where
q) = — 21

v+b2/(1+62)
and T,,,(+) is the cumulative distribution function of the standard ¢ distribution with m degrees

of freedom (df). The parameters § and v influence the shape of the distribution as discussed

below.

First, observe that with 6 = 0 the above density reduces to the standard ¢ density with v
df. In addition if v — oo then it approaches the normal distribution. Second, with § = 0 and
v = 1, (2.3) is the pdf of the Cauchy distribution. Clearly, the mean and variance of b does
not exist in this case. Third, skewed distributions emerge for non-zero values of §. For positive
values of ¢ the distribution is positively skewed and for negative values it is negatively skewed.
The mean of the distribution exists if ¥ > 1 and the variance exists if v > 2. We note the mean

and variance of b for future reference. These are given by,

v\1/2 T[(v — 1) /2]
B0) = () Tw/2)
and
Var(b) = (1 + 52)5 - % (W) 8. (2.4)

The density of w = exp(b) implied by (2.3) is given by,

Fu(wl6,v) = - fy (og(w)]6.) (23)

where f3(-0,v) is given in (2.3).



2.2 Comparison of Frailty Distributions

Frailty models are usually compared by studying the dependence structures induced by them.
However, there are two types of dependence structures to consider: global and local. Measures
for local dependence structures include the cross-ratio function which is often defined by taking
an appropriate ratio of the derivatives of the joint and marginal survival functions. The quan-
tities required to form the cross-ratio function are not available in analytic closed form under
the proposed log-skew-t frailty distributions, thus limiting the scope of theoretical comparisons

to be made.

To study the frailty models using a global measure of dependence we use the correlation
between the log-survival times, though there are other measures available. It is not meaningful
to study the correlation between the survival times themselves since the moments of the frailty
distribution w do not always exist. To simplify the exposition suppose that the survival times
are bivariate with two components denoted by 77 and T5. Assuming that the baseline hazard

function is Weibull, Hougaard (2000, p227) shows that

Var(b
Corr(log Tl,log T2) = W—E—i’% (26)

For the gamma frailty model Var(logw) = 4'(n). For the stable frailty model corr(log T}, log T5)

is given by 1—a?. The correlation of the log-survival times under the log-skew-t model is obtained

using (2.4).

The above analytical results facilitate comparisons between the frailty distributions. To
illustrate, we set ¥ = 8 to have a moderate tail in the log-skew-t¢ frailty distribution. Now
we equate Var(logw) under the three different frailty models. In addition, we suppose that the
E(logw) under the stable and the log-skew-t model are equal. Solving these equations we obtain

n=1.14, a = 0.74, and § = 0.23. The resulting corr(log Ty, logTs) is 1 — 0.74? = 0.45.

Since the tail of the frailty distribution plays an important role in dictating the dependence
structure we investigate the shape and tail of the frailty densities for the above parameter
values. The densities are plotted in Figure 1. The tail of the log-skew-t-density is heavier than
the gamma but lighter than the stable density (2.2). Thus it is seen that for the same amount
of correlations between the log survival times the log-skew-t distribution provides a flexible

alternative to the heavy tailed stable distribution and light tailed gamma distributions.

Note that if w has the gamma distribution (2.1) then E(log(w)) = ¥(n) — log(n), which is



always non-positive. However, under the stable frailty model E(log(w)) is always non-negative.
This is the reason for not equating E(log(w)) for the gamma case with that of the other frailty

distributions.

3 Baseline hazard function

The assumption of correlated prior processes for the baseline hazard function is very common
in survival analysis. See for example, Gamerman (1991), Arjas and Gasberra (1994) and Sinha

and Dey (1997) for a review. The setup is as follows.

Suppose that time is divided into g pre-specified intervals Ij, = (71, 7%] for k=1,2,... ,g
where 0 =79 < 73 < ... < 7y < 00, T, being the last survival or censored time. Assume that

the baseline hazard is constant within each interval. That is,
ho(tij) = hg, for tij € I},. (31)
Following Sahu et al. (1997) we assume a martingale process prior for Ay, = log(hg,).

We assume that
AklAy - X1 ~ N(Ag—1,07) (3:2)

with Ao = 0. Let A = (A1,...,Ay). See e.g. Gamerman (1991) and Arjas and Gasbarra (1994)

for more general models.

Several authors have suggested different choices for the number of grid points g. Some early
references include Breslow (1974) and Kalbfleisch and Prentice (1973). More recent solutions
to this problem suggest leaving g unspecified, see for example Arjas and Heikkinen (1997) and
McKeague and Tighiouart (2000). Following this last article we assume that the jump times
T1,T2,... form a time-homogeneous Poisson process with rate a. This has several advantages
over a fixed value of g. One such advantage is that the number and positions of the grid points

need not be fixed in advance.



4 Model Specification

4.1 Likelihood Specification

We only consider right-censored survival data and assume that the censoring is non-informative.
Let 6;; denote the indicator variable taking value 1 if the jth subject (j = 1,...,m) of the ith
group (¢ = 1,...,n) fails and value 0 otherwise. Hence ¢;; is a failure time if §;; = 1 and a
censoring time otherwise. Let z;; be the co-variate for each subject. Thus the triplet (¢;;, d;;, ;)
is observed for all ¢ and j. Let (x,z) denote the collection of all such triplets (¢;;,d;;,2:;). Let

w denote the vector of unobserved w;’s.

The likelihood is derived as follows. The jth subject of the ith group has a constant hazard of
hij = w;hi0;; in the kth interval (k = 1,... , g) given the unobserved frailty w;. If the subject has
survived beyond the kth interval, i.e., ¢;; > 7, the likelihood contribution is exp{—hyAr8;;w;}
where Ay = 75 — 7—1- If the subject has failed or was censored in the kth interval, i.e.,
Th—1 < ti; < 7 then the likelihood contribution is (thijwi)é"j exp {—hg(ti; — Th—1)8iw;} -
Hence, we arrive at the following likelihood, L(8, A, w, g; x,z) say,

n om (9
1111 {H eXp(—hkAkeijwi)} (hgiy+105w:) ™ exp {—hg,y 1 (tij — 7o, 0503} (4.1)
i=1j=1 (k=1

where g;; is such that t;; € (1y,;, 7y, 41] = Iy, 11.

4.2 Prior Specification

The joint prior distribution of all the parameters is given by

n
[ trws]-- ) --) w(g)m(Alg) =(8B), (4.2)
i=1

where --- denote the hyper-parameters of the frailty distribution. We assume vague prior

distributions for the components of 3. Thus each component of 3 is assumed to follow the normal
distribution with mean zero and a large variance (10*) independently. The frailty distribution
can be any one of the gamma, stable and log-skew-t distributions given in (2.1), (2.2), and (2.5),
respectively. In the gamma frailty case the hyper-parameter is 17 and we assume that 7 follows a
Gamma distribution with mean 1 (for identifiability) and large variance to incorporate flexibility,
Gamma(¢, @) say with a small choice of ¢. For the parameter a in the stable frailty model we

specify the beta prior distribution since the beta family of distributions is quite flexible.



Under the log-skew-t frailty distribution (2.5) we have two hyper-parameters, § and v. We
assume that ¢ follows the uniform distribution in an interval [0, q] with pre-specified q. We
restrict § to a bounded interval in order to avoid the conflict between fat tail and skewness in
(2.5). Negative values of § are not considered since we intend to have a positively skewed ¢

distribution.

We now require a suitable prior distribution for v, the degrees of freedom parameter. Observe
that the log-skew-t frailty distribution (2.5) is well defined for any positive value of v. Thus
we treat v as a continuous random variable taking positive values. We propose the exponential
distribution with mean x as the prior distribution for v. Finally, we recommend a moderate
value of k (5-15) so that the heavy tailed log-skew-t-distributions are put forward as prior

distributions.

The time-homogeneous Poisson process assumption on the jump times implies that g ~
Poisson(a Tmax) where Tmax is the maximum observed survival time. Given g, the martingale

specification (3.2) implies that
A ~ N, (0, c°C™1) (4.3)

where the g X g matrix C has all elements zero except for cx, =2,k =1,... ,g and cgp41 = —1,

k=1,...,9g—land ¢y =—1for k=2,...,g.

Let ¢ denote the collection of parameters, for which the prior distribution is given by (4.2).
The joint posterior density of ¢ is simply proportional to the likelihood (4.1) times the prior
(4.2), i.e.

(¢lx,z) oc L(B, A, w, g; x,2) x [[ [w(wy| -- )] w(-- ) w(g)m(Alg) m(B). (4.4)

i=1
4.3 Hyper-parameter values and prior sensitivity

Several hyper-parameters and simulation constants need to be specified in order to successfully
adopt the Bayesian approaches. The aim is to keep the prior distributions as vague as possible
so that the data, rather than the prior, drives the inference. Also sensitivity of the assumed
values to statistical inference need to be checked. The adopted hyper-parameter values for our

two examples in Section 6 are discussed below.

For the gamma distribution prior on 7 of the gamma frailty model ¢ is taken to be 0.001.



This specifies a diffuse but proper prior distribution for the inverse-variance parameter. The
skewness parameter, §, was given a uniform prior in [0,5]. The resulting interval was large
enough to capture the skewness in the frailty distribution. The degrees of freedom parameter
v was given an exponential prior distribution with mean 10. This is to specify a moderate to

heavy tail of the assumed ¢ distribution.

Recall that for the stable frailty model we have assumed the beta distribution for the pa-
rameter a. We have experimented with many combination of values for the parameters of the
beta distribution including the case for uniform distribution. In the latter case it was difficult
to sample from the resulting full conditional distribution due to computer underflow problems
similar to the ones reported in Buckle (1995). As a result we work with informative beta prior
distribution which is further justified by the fact that in both of our examples there is only
weak association present between the multivariate survival times. In particular, we assumed the
parameters of the beta distribution to be proportional to a and b, say where a/(a + b) = 3/4.
This gives a-priori mean of a to be 3/4 which leads to moderate correlations between the log

survival times as discussed earlier in Section 2.2.

The number of jump times, g was assumed to be a Poisson distribution with mean 10,
and truncated in the interval 1 to 20. This automatically specifies a to be 10/7max. The

2, of the log baseline hazard levels was assumed to be 1. Bayesian inference

prior variance, o
was largely insensitive to changes in the values of these hyper-parameters. In particular we
have always obtained a robust posterior distribution of g with about 6-8% acceptance in the
reversible jump steps. The values ¢ = 7,...,15 always accounted for more than 90% of the

probability mass.

We have adopted the pseudo-Bayes factor (see e.g. Geisser and Eddy, 1979; Gelfand and
Dey, 1994) for model comparison. The cross-validation predictive densities known as conditional
predictive ordinates (CPO) have also been used, see e.g. Sahu et al., (1997) for definition. The
CPOs measure the influence of individual observations and are often used as predictive model

checking tools.

10



5 Reversible Jump Steps

Observe that the dimension of ¢ changes as the number of jump times g associated with the
baseline hazard function changes. Hence we fit the full Bayesian model using the reversible jump
Markov chain Monte Carlo method, see Green (1995) and McKeague and Tighiouart (2000).

The algorithm is described as follows.

Suppose that the Markov chain is at a current state x and it is intended to move to a new
state y where the dimension of x and y can be different. The new point y and its acceptance
probability is obtained as follows. The move will be implemented by drawing continuous random
variables u and v of appropriate dimensions, such that the dimension of (z,u) is same as the
dimension of (y,v). Further, the proposal point y is obtained using a one-to-one transformation
(y,v) = T(xz,u). The proposed move is then accepted with probability

. m(y)g2(v) | 0T (z,u
a{(z,u),(y,v)} = min {1, Wg;gl Eug 6(3(1:,7u)) } (5.1)

where 7(-) is the posterior distribution and ¢ (u) and g2(v) are the densities of u and v, respec-

tively.

Tt is straightforward to check that the acceptance probability in (5.1) is the usual Metropolis-

Hastings acceptance probability for accepting the proposal (y,v) when the current point is (z,u).

We consider the following three move types for our problem,

(a) updating all the parameters in ¢ except for g,
(b) birth of a new jump time,

(c) death of an existing jump time.

The move type (a) does not involve dimension change and is accomplished by the usual Gibbs
sampling steps. Sahu et al. (1997) provide details for the steps involving 3, w and 7 for the
gamma frailty model. The integral in the density of the stable frailty model (2.2) is calculated
using the Newton-Cotes numerical quadrature formula, see e.g. Forsythe et al (1977). Under
the log-skew-t frailty model the calculations make use of appropriate Metropolis-Hastings steps.

The remaining two move types change the dimension of A by 1. These are detailed as follows.
Consider the birth move (b) first. A new jump time 7* is drawn uniformly in (79, Tmax)-

11



Suppose that 7* € (7x—1, 7). Now we need to generate two new log baseline hazard rates )\5c
and A}, in the proposal when the current point is Ax. Since there is one degree of freedom for
proposing the move we simulate « uniformly in (—e, €) for some € > 0. Now X}, is taken to be a
convex combination of A\;_1 and Ay +u, and A 41 is taken to be a convex combination of Ay —u

and A41. In particular we take

™ — Tk—1 Tk — T*
A, = ——— M1+ ——— (O ), (5.2)
Tk — Tk—1 Tk — Tk—1
T — Tp_1 TR — T*
o= T ) + T (5.3)
Tk — Tk—1 Tk — Tk—1

Now we set A} = X; for 1 <i < k—1and X, = Ajyq for k <i < g— 1. Further, we let 7, = 7*

and set 7; = 7; for 0 <i<k—1land 7, =7 for k<i<g.

Let ¢’ be the proposed parameter vector where A and g are replaced by A’ and ¢’ = g + 1,
respectively. The remaining parameters in ¢ and ¢’ are kept the same. Observe that the Jacobian

for this type of move is
PYAVAVA
AR

The density g1 (u) in (5.1) is =I(—€ < u < €) and generation of v is not required.

Now the ratio of the full posterior density (4.4) evaluated at ¢’ and ¢ is calculated. Observe
that there are some obvious cancellations in the ratio since the parameters 8, w and the hyper-
parameters of the frailty distribution --- are un-changed in ¢'. The density ratio is multiplied
by the Jacobian and divided by ¢; (u). Finally the acceptance probability (5.1) is calculated by

taking the minimum.

The move type (¢) is now straightforward. The proposal is generated as follows. An index k
is uniformly selected from {1,...,9 — 1} and the corresponding jump time 73, is removed. The
remaining jump times are re-labeled as: 7/ = 7; for 0 <i < k—1land 7] =741 for k <i < g-—1.
Now A and Agq; are to be combined to obtain a new log baseline hazard level Aj,. Toward this
end, we obtain solutions of (5.2) and (5.3) for A}, and u (which appear on the right hand sides of
the equations). If u falls outside the interval (—¢, €) then the move is rejected forthwith since the
corresponding birth move would not be reversible. Otherwise, we set A} = A; for 1 <i <k —1
and A} = Ajq1 for k+1 <4 < g. The acceptance probability is calculated using the inverse ratio

in (5.1) and the fate of the move is decided accordingly.

12



6 Examples

6.1 Kidney Infection Data Example

McGilchrist and Aisbett (1991) analyze time to first and second recurrence of infection in 38
kidney patients on dialysis using a Cox proportional hazard model with a multiplicative frailty
parameter for each patient. The primary co-variate is sex of the patients. There were 28 female

patients each with two recurrence times some of which were censored.

Table 1 shows the posterior mean, standard deviation and 95% credible intervals for all the
parameters. Although the parameter § is significant under all three models, it is farthest from
zero and has the smallest variance under the log-skew-t model. That is the covariate effect is
most strongly pronounced under the log-skew-t model. The skewness parameter § under this
model is also significant and the estimate of the degrees of freedom parameter v suggests that

a log-t model is better than a log-normal model.

To further quantify the difference between the frailty models we also estimate the predictive
survival curve for a typical female patient under the three models. Figure 2 plots the curves.
The Kaplan-Meyer estimate of the survival function is also plotted in the same graph. The
Kaplan-Meyer estimates ignore the dependence present in the data and are to be used as rough

guide only. The observed survival times are shown as points on the time axis.

The majority of the observed survival times are below 200. Around time=200 the Kaplan-
Meyer estimate shows a sharp decrease in the survival function as the data suggests. The
predictive survival function under the log-skew-t model adapts to this most rapidly. Other

models follow suit, but at a slower pace than the log-skew-t model.

The last issue we investigate is whether anything is gained by having an unknown number of
jump times. We compare two versions of the log-skew-t model. The first is as described above
and the second version keeps g fixed at 10, which was the choice adopted by other authors, see

e.g. Sahu et al. (1997). Here the endpoints are placed at equal time intervals.

The posterior mean estimates of the log baseline hazard function under the fixed g and
the random g model are plotted in Figure 3. Survival times are plotted as points on top of
the graph. Some interesting conclusions can be made from the plot. The peaks in the hazard

functions are caused by observed survival times. Similarly the troughs are seen in the intervals

13



where there are no observed survival times. The baseline hazard function for the model with
random g quickly adapts to an occurrence of a failure while the function corresponding to the
fixed case does not. The baseline hazard function in the fixed g case remains unchanged even
after a failure has occurred in some intervals. As a result the function for the random g case is

seen to be much smoother. That is, the random g model is more flexible.

To compare the fixed and random models using the pseudo-Bayes factor we have also cal-
culated the pseudo-marginal log likelihood under the two models. The pseudo-Bayes factor for
the random g model is 3.7 which suggests strong evidence in favor of the random ¢ model. In

conclusion, the random g model is much better than the fixed g model.

6.2 Litters Example

We consider the rat tumor data first studied by Mantel et al. (1977). There were 50 litters of
rats with each litter consisting of three rats. A randomly selected rat from each litter was given
a drug and the other two were selected as controls and were given a placebo. The survival time

to develop tumor for each rat was recorded.

The parameter estimates are given in Table 2. Note that, as expected for the gamma frailty
model the estimate of § is closest to zero. That is, the covariate effect is attenuated under the
gamma frailty model. To see this more clearly, the kernel density estimates of the posterior for
B under the three models are plotted in Figure 4. The right tail of this density is heavier under
the stable frailty model. The figure also shows that the estimate from the proposed log-skew-t

model lies in between the estimates from the gamma and the stable frailty model.

The dependence parameter o under the stable model is estimated to be 0.70 which shows
moderate local dependence between the component survival times. The estimate of variance of
the frailty distribution under the gamma model is also significant. Under the log-skew-t model
the estimate of the skewness parameter § is also significant and the estimate of the degrees of
freedom shows that the frailty distribution has a moderate tail, which agrees with the stable

frailty model.

It is of interest to check whether the form of the assumed frailty distribution affects the
posterior distribution of the number jump times, g. To investigate this the posterior distribution

of g for each of the three models is plotted in Figure 5. The estimated distributions seem not

14



to differ too much, although the distribution under the skew model tends to put less mass on

the smaller values of g.

The log-pseudo-Bayes factor in favor of the log-skew-t model compared against the stable
model is estimated to be 2.3. This suggests strong preference of the data for the log-skew-¢
model. In order to visualize this, Figure 6 plots the individual CPOs. The plot shows that
93 of the 150 observations support the log-skew-t model. The data do not show such strong
evidence for the gamma frailty model. The pseudo-Bayes factor for the log-skew-t model versus
the gamma model is estimated to be 2.45. This shows some positive evidence for the log-skew-t
model as well. Hence the proposed frailty model is seen to be better than the stable or gamma

frailty models.

7 Conclusion

In this paper we have extended the multivariate survival models in two directions. The log-
skew-t frailty distribution adopted here is shown to be more flexible than the popular gamma
and stable frailty distributions. The new development is also shown to provide better model fit
according to some well known predictive Bayesian model checking and selection criteria in our
example. Also we have shown in our examples that the gamma frailty distribution attenuates
the covariate effect much more than the proposed log-skew-t frailty distribution. These reasons

justify the consideration of the log-skew-t model.

The new frailty distribution cannot take multi-modal shape, however. If it is desired to
obtain multi-modal frailty distribution then mixture distributions (Ravishanker and Dey, 2000)
or a non-parametric specification in infinite dimensional parameter space (Walker and Mallick,

1997) should be considered.

The baseline hazard function conditional on the frailty distribution is modeled using a flexible
martingale process. It imposes smoothing using its neighbors. The choice of jump times of the
baseline hazard function is also made quite flexible using a time-homogeneous Poisson process.
This removes the ad-hoc assumptions often made when specifying the number and position of

the jump times.

We have developed the powerful reversible jump Markov chain Monte Carlo method for
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multivariate survival analysis. Our methods can be extended to perform data analysis in many

other scenarios including the models with time-dependent covariate effects.

We have illustrated our methods using two well known examples. Various aspects of the
new models have been quantified using output of our MCMC implementation. The pseudo
Bayes factors show an order of magnitude improvement provided by the new models. These
improvements in model fit have been illustrated and explained using various diagnostic plots.
The proposed models are shown to be viable alternatives to the gamma and stable frailty models.
Thus the contribution of the current paper can be seen in the following comment made by
Hougaard (2000). ‘Finding the right tools for a given problem is more exciting than using a

single tool for all problems.’
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Figure 1: Densities of frailty distributions. The graphs are for (i) the log-skew-¢ distribution with
0 = 0.23 and v = 8, (ii) positive stable with o = 0.74, and (iii) the gamma distribution with n = 1.14.

g ¢ v
Gamma | -1.95(0.51) | 0.58 (0.31) -
(-3.02,-1.02) | (0.13,1.31) -
Stable ~2.14 (0.55) | 0.78 (0.0091) -
(-3.20, -0.48) | (0.76, 0.81) -
Log-Skew-t | —2.34 (0.58) | 0.34 (0.26) 13.4 (9.0)
(-3.47,-1.25) | (0.01, 0.96) | (2.98, 37.10)

Table 1: Parameter estimates from the gamma, stable and log-skew-t model. Posterior means
are followed by posterior standard deviations in the first row. 95% credible intervals are shown

in the second row. ¢ is n~! for the gamma model, « for the stable model and § for the log-Skew-t

model.
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Figure 2: Predictive survival curves for a typical female patient for the kidney infection example.
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Figure 3: Posterior mean estimate of the log base line hazard function for fixed g and random g model
for the kidney infection example.
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B ® v
Gamma | 0.69 (0.31) | 0.51 (0.45) -
(0.09, 1.30) | (0.06, 1.69) -
Stable 0.78 (0.32) | 0.70 (0.0061) =
(0.13,1.41) | (0.69, 0.71) -
Log-Skew-t | 0.71 (0.31) | 0.33 (0.25) 15.6 (9.6)
(0.09, 1.31) | (0.01,0.95) | (3.32, 40.02)

Table 2: Parameter estimates from the gamma, stable and log-skew-t model for the litters
example. Posterior means are followed by (standard deviations) in the first row. 95% credible
intervals are shown in the second row. ¢ is ™! for the gamma model, « for the stable model,

and § for the log-Skew-t model.
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Figure 4: The kernel density estimates of posterior for 8 under the three different frailty distributions
for the litters example.
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Figure 5: The posterior distribution of g under the three models for the litters example.
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Figure 6: The CPO plot for comparing the log-skew-t model versus the stable model. 93 out of 150
observations support the skew model. The log pseudo-Bayes factor is 2.3.
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