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Combining monitoring data and

computer model output in assessing
environmental exposure

Alan E. Gelfand and Sujit K. Sahu

18.1 Introduction

The demand for spatial models to assess regional progress in air quality has
grown rapidly over the past decade. For improved environmental decision-
making, it is imperative that such models enable spatial prediction to reveal
important gradients in air pollution, offer guidance for determining areas in
non-attainment with air standards, and provide air quality input to models
for determining individual exposure to air pollution. Spatial prediction has the
potential to suggest new perspectives in the development of emission control
strategies and to provide a credible basis for resource allocation decisions,
particularly with regard to network design.

Space-time modelling of pollutants has some history including, e.g. Guttorp
et al. (1994), Haas (1995) and Carroll et al. (1997). In recent years, hierar-
chical Bayesian approaches for spatial prediction of air pollution have been
developed (Brown et al., 1994; Le et al., 1997; Sun et al., 2000). Cressie et al.
(1999) compared kriging and Markov-random field models in the prediction
of PM10 (particles with diameters less than 10 Ïm) concentrations around the
city of Pittsburgh. Zidek et al. (2002) developed predictive distributions on
non-monitored PM10 concentrations in Vancouver, Canada. They noted the
under-prediction of extreme values in the pollution field, but their method-
ology provided useful estimates of uncertainties for large values. Sun et al.
(2000) developed a spatial predictive distribution for the space-time response
of daily ambient PM10 in Vancouver. They exploit the temporal correlation
structure present in the observed data from several sites to develop a model
with two components, a common deterministic trend across all sites plus a
stochastic residual. They illustrate the methods by imputing daily PM10 fields
in Vancouver. Kibria et al. (2000) developed a multivariate spatial prediction
methodology in a Bayesian context for the prediction of PM2.5 in the city of
Philadelphia. This approach used both PM2.5 and PM10 data at monitoring sites



978–0–19–954890–3 18-OHagan-c18 OHagan-West (Typeset by SPi, Chennai) 483 of 510 November 5, 2009 14:47

Assessing Environmental Exposure 483

with different start-up times. Shaddick and Wakefield (2002) proposeed short
term space-time modeling for PM10.

Smith et al. (2003) proposed a spatio-temporal model for predicting weekly
averages of PM2.5 and other derived quantities such as annual averages within
three southeastern states in the United States. The PM2.5 field is represented
as the sum of semiparametric spatial and temporal trends, with a random
component that is spatially correlated, but not temporally. These authors apply
a variant of the expectation-maximization (EM) algorithm to account for high
percentages of missing data. Sahu and Mardia (2005) present a short-term fore-
casting analysis of PM2.5 data in New York City during 2002. Within a Bayesian
hierarchical structure, they use principal kriging functions to model the spatial
structure and a vector random-walk process to model temporal dependence.
Sahu et al. (2006) consider modelling of PM2.5 through the use of rural and
urban process models while Sahu et al. (2007) deal with misalignment between
ozone data and meteorological information. Sahu et al. (2009) develop a hier-
archical space-time model for daily eight-hour maximum ozone concentration
data covering much of the eastern United States. The model combines observed
data and forecast output from a computer model known as the Community
Multi-scale Air Quality (CMAQ) Eta forecast model (see below for references) so
that the next day forecasts can be computed in real time. They validate the model
with a large amount of set-aside data and obtain much improved forecasts of
daily O3 patterns. Berrocal et al. (2008) propose a downscaling approach by
regressing the observed point level ozone concentration data on grid cell level
computer model output with spatially varying regression co-efficients specified
through a Gaussian process. Rappold et al. (2008) study wet mercury deposition
over space and time. Finally, Wikle (2003) provides a nice overview of the role
of hierarchical modeling in environmental science. With so much interest in
space-time exposure prediction, attention to data fusion models to improve
such prediction is not surprising.

18.1.1 Environmental computer models

Computer models are playing an increasing role in our quest to under-
stand complex systems. In this regard, the discussion paper of Kennedy and
O’Hagan (2001) reviews prediction and uncertainty analysis for systems which
are approximated by complex mathematical models. These models are often
implemented as computer codes and typically depend on a number of input
parameters which determine the nature of the output. The input parameters
are often unknown and are customarily estimated by ad hoc methods such
as very crude fitting of the computer model to the observed data. Kennedy
and O’Hagan present a Bayesian calibration technique which improves on this
usual approach in two respects. First, Bayesian prediction methods allow one
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to account for all sources of uncertainty including the ones from the estimation
of the parameters. Second, any inadequacy in the model specification, even
under the best-fitting parameter values, is revealed by discrepancies between
the observed data and the model predictions. Illustration is provided using
data from a nuclear radiation release at Tomsk and also from a more complex
simulated nuclear accident exercise.

Cox et al. (2001) describe a statistical procedure for estimation of unknown
parameters in a complex computer model from an observational or experimen-
tal data base. They develop methods for accuracy assessments of the estimates
and illustrate their results in the setting of computer code which models nuclear
fusion reactors. Fuentes et al. (2003) develop a formal method for evaluation
of the performance of numerical models. They apply the method to an air
quality model (essentially the CMAQ model) and discuss related issues in the
estimation of nonstationary spatial covariance structures.

Turning to environmental computer models, high spatial resolution numer-
ical model output is now widely available for various air pollutants. Our focus
here is on the CMAQ forecast model. CMAQ is a modelling system which
has been designed to approach air quality as a whole by including capabili-
ties for modelling multiple air quality issues, including tropospheric ozone,
fine particles, toxics, acid deposition, and visibility degradation. CMAQ was
also designed to have multiscale capabilities so that separate models are not
needed for urban and regional scale air quality modelling. The target grid
resolutions and domain sizes for CMAQ range spatially and temporally over
several orders of magnitude. With the temporal flexibility of the model, sim-
ulations can be performed to evaluate longer term (annual to multi-year) pol-
lutant climatologies as well as short term (weeks to months) transport from
localized sources. The ability to handle a large range of spatial scales enables
CMAQ to be used for urban and regional scale model simulations. See, e.g.
http://www.epa.gov/asmdnerl/CMAQ/.

It is worth distinguishing the goal of CMAQ which is to provide ambient
exposure at high spatial and temporal resolution from computer models that
provide individual level exposure. In particular, the former, assimilated with
station data, provide the ambient exposures which drive the latter. Again, the
contribution of this chapter is to discuss fully model-based implementations of
this fusion.

With regard to the latter, Zidek and his co-authors have written a series of
papers considering prediction of human exposure to air pollution. In particular,
Zidek et al. (2007) present a general framework for constructing a predictive
distribution for the exposure to an environmental hazard sustained by a ran-
domly selected member of a designated population. The individual’s exposure is
assumed to arise from random movement through the environment, resulting
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in a distribution of exposure that can be used for environmental risk analysis.
Zidek et al. (2005) develop a computing platform, referred to as pCNEM, to
produce such distributions. This software is intended for simulating exposures
to airborne pollutants. In the paper they illustrate with a model for predicting
human exposure to PM10.

Further work along these lines has been an objective of US Environmental
Protection Agency (EPA) initiatives. The EPA’s National Exposure Research
Laboratory (NERL) has developed a population exposure and dose model, par-
ticularly for particulate matter (PM), called the Stochastic Human Exposure
and Dose Simulation (SHEDS) model (Burke et al., 2003). SHEDS-PM uses
a probabilistic approach that incorporates both variability and uncertainty to
predict distributions of PM exposure, inhaled dose, and deposited dose for
a specified population. SHEDS-PM estimates the contribution of PM from
both outdoor and indoor sources (e.g. cigarette smoking, cooking) to total per-
sonal PM exposure and dose. In particular, SHEDS-PM generates a simulation
population using US Census demographic data for the user-specified popula-
tion with randomly assigned activity diaries of individuals. Output from the
SHEDS-PM model includes distributions of exposure and dose for the specified
population, as well as exposure and dose profiles for each simulated individual.
It is Bayesian in its conception in the sense that the input parameters (e.g.
air exchange rates, penetration rates, cooking and smoking emission rates) are
drawn at random from suitable priors.

A similar EPA product, the Air Pollutants Exposure Model (APEX) was
developed by the Office of Air Quality and Planning (Richmond et al. 2002).
It is derived from the probabilistic National Ambient Air Quality Standards
(NAAQS) Exposure Model for carbon monoxide (pNEM/CO). APEX serves
as the human inhalation exposure model within the Total Risk Integrated
Methodology (TRIM) model framework. APEX is intended to be applied at
the local, urban, or consolidated metropolitan area scale and currently only
addresses inhalation exposures. The model simulates the movement of indi-
viduals through time and space and their exposure to the given pollutant
in various micro-environments (e.g. outdoors, indoors residence, in-vehicle).
Results of the APEX simulations are provided as hourly and summary expo-
sure and/or dose estimates, depending on the application, for each individual
included in the simulation as well as summary statistics for the population
modelled.

The format of the remainder of this chapter is as follows. In Section 18.2
we review some algorithmic and pseudo-statistical approaches in weather pre-
diction. Section 18.3 provides a review of current state of the art fusion meth-
ods for environmental data. We develop a non-dynamic downscaling approach
based on our recent work (Sahu, Gelfand, and Holland, 2008) in Section 18.4.
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A few summary remarks are provided in Section 18.5. Appendix A contains
an introduction to the Gaussian processes (GP) and Appendix B outlines
the full conditional distributions for the downscaler approach proposed in
Section 18.4.

18.2 Algorithmic and pseudo-statistical approaches in
weather prediction

A convenient framework within to review algorithmic and pseudo-statistical
approaches to data assimilation is in the context of numerical weather
prediction. Kalnay (2003) provides a recent development of this material. Such
assimilation has a long history dating at least to Charney (1951) who recognized
that hand interpolation of available weather observations to a regular grid was
too time consuming and that numerical interpolation methods were needed.
Earliest work created local polynomial interpolations using quadratic trend
surfaces in locations in order to interpolate observed values to grid values. Of
course, in the past half century, such polynomial interpolation has come a long
way to become a standard device in the statistician’s toolkit; we do not detail this
literature here.

Instead, we note that what emerged in the meteorology community was
the recognition that a first guess (or background field or prior information)
was needed (Bergthorsson and Döös, 1955), supplying the initial conditions.
As short-range forecasts became better and better, their use as a first guess
became universal. The climatological intuition here is worth articulating. Over
‘data-rich’ areas the observational data dominates while in ‘data-poor’ regions
the forecast facilitates transport of information from the data-rich areas. Of
course, in the setting of fully-specified models and fully model-based inference
we can quantify this adaptation and the associated uncertainty. Indeed, this is
the contribution of the following sections of this chapter.

We illustrate several numerical approaches using, illustratively, temperature
as the variable of interest. At time t , we let Tobs(t) be an observed measurement,
Tb(t) a background level, Ta(t) an assimilated value, and Ttrue(t) the true value.
An early scheme is known as the successive corrections method (SCM) which
obtains Ti,a(t) iteratively through

T (r +1)
i,a (t) = T (r )

i,a (t) +

[∑
k

wik

{
Tk,obs(t) − T (r )

k,a(t)
}]/(∑

k

wik + Â2

)
.

Here, i indexes the grid cells for the interpolation while k indexes the observed
data locations. T (r )

k,a(t) is the value of the assimilator at the r th iteration at
the observation point k (obtained from interpolating the surrounding grid
points). The weights, wik , can be defined in various ways but usually as a
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decreasing function of the distance between the grid point and the observation
point. In fact, they can vary with iteration, perhaps becoming increasingly
local. See, e.g. Cressman (1959) and Bratseth (1986). The analysis reflects
the observations more faithfully when Â2 is taken to be zero, see Cressman
(1959). Non-zero values of Â2 are assumed when the observations have errors,
and the resulting analyses provide some positive weight to the background
field.

Another empirical approach is called nudging or Newtonian relaxation. Sup-
pose, suppressing location, we think about a differential equation driving tem-
perature, e.g. dT (t)/dt = a(T (t), t, Ë(t)). If we write a(·) as an additive form say
a(T (t), t) + Ë(t) and let Ë(t) = (Tobs(t) − T (t))/Ù then Ù controls the relaxation.
Small Ù implies that the Ë(t) term dominates while large Ù implies that the
nudging effect will be negligible.

We next turn to a least squares approach. Again, suppressing location, sup-
pose we assume that T (1)

obs(t) = Ttrue(t) + Â1(t) and T (2)
obs(t) = Ttrue(t) + Â2(t) where

we envision two sources of observational data on the true temperature at t .
The Âl have mean 0 and variance Û2

l , l = 1, 2. Then, with the variances known,
it is a familiar exercise to obtain the best unbiased estimator of Ttrue(t) based
upon these two pieces of information. That is, Ta(t) = a1T (1)

obs(t) + a2T (2)
obs(t) where

a1 = Û2

2
/(Û2

1
+ Û2

2
) and a2 = Û2

1
/(Û2

1
+ Û2

2
). Of course, we obtain the same solution

as the maximum likelihood estimates (MLE) if we use independent normal
likelihoods for the T (l )

obs(t)s.
A last idea here is simple sequential assimilation and its connection to the

Kalman filter. In the univariate case suppose we write Ta(t) = Tb(t) + „(Tobs(t) −
Tb(t)). Here, Tobs(t) − Tb(t) is referred to as the observational innovation or
observational increment relative to the background. The optimal weight „ =
Û2

obs/(Û2

obs + Û2

b), analogous to the previous paragraph. Hence, we only need a
prior estimate of the ratio of the observational variance to the background
variance in order to obtain Ta(t). To make this scheme dynamic, suppose the
background is updated through the assimilation, i.e. Tb(t + 1) = h(Ta(t)) where
h(·) denotes some choice of forecast model. Then we will also need to create a
revised background variance; this is usually taken to be a scalar (>1) multiple
of the variance of Ta(t).

Finally, the multivariate assimilation idea is now clear. Now we collect the
grid cell variables to vector variables and write Ta(t) = Tb(t) + W(Yobs(t) − Yb(t)).
Here, the vector Yobs denotes variables that are different from the ones we seek
to interpolate. For temperature, these might be Doppler shifts, radar reflec-
tivities, or satellite radiances. Then, g is the nonlinear operator that converts
background temperatures into guesses for these new variables. The dimension
of Y is not necessarily the same as that of T . W is the gain matrix that usually
appears in the Kalman filter. Finally, we introduce errors in the transitional
stage, Tb(t) = Ttrue(t) + Âb(t) and Ta(t) = Ttrue(t) + Âa(t), as well as errors in the
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observational stage, i.e. for the Yobs(t). Assuming all errors are Gaussian, the
dynamic model is specified and the Kalman filter can be implemented to fit the
model.

18.3 Review of environmental exposure data fusion methods

Recall that our objective is to combine model output and station data to improve
assessment of environmental exposure. Such synthesis is referred to as assimi-
lation or fusion. Here we move from the more algorithmic strategies of the pre-
vious section to fully model-based approaches. In the next two subsections we
review the work of Fuentes and Raftery (2005) which has received considerable
attention and the very recent work of McMillan et al. (2008). A full development
of the approach of Sahu et al. (2008) with an example is deferred to the following
sections.

18.3.1 Fusion modelling using stochastic integration

The fusion approach proposed by Fuentes and Raftery (2005) builds upon
earlier Bayesian melding work in Poole and Raftery (2000). It conceptualizes
a true exposure surface and views the monitoring station data as well as the
model output data as varying in a suitable way around the true surface. In
particular, the average exposure in a grid cell A, denoted by Z(A), differs from
the exposure at any particular location s , Z(s ). The so-called change of support
problem in this context addresses converting the point level Z(s ) to the grid
level Z(A) through the stochastic integral,

Z(A) =
1

|Aj |
∫

Aj

Z(s ) ds , (18.1)

where |A| denotes the area of the grid cell A. Fusion modelling, working with
block averaging as in (18.1) has been considered by, e.g. Fuentes and Raftery
(2005).

Let Y(s ) denote the true exposure corresponding to Z(s ) at a station s . The
first model assumption is:

Z(s ) = Y(s ) + Â(s ) (18.2)

where Â(s ) ∼ N(0, Û2

Â ) represents the measurement error at location s . The true
exposure process is assumed to be:

Y(s ) = Ï(s ) + Á(s ) (18.3)

where Ï(s ) provides the spatial trend often characterized by known functions
of the site characteristics such as the components of s , elevation etc. The error
term Á(s ) is a spatially coloured process assumed to be the zero mean GP with
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a specified covariance function. (Appendix A provides an introduction to GPs.)
The output of the computer model denoted by Q(s ) is often known to be biased
and hence this is modelled as:

Q(s ) = a(s ) + b(s )Y(s ) + ‰(s ) (18.4)

where a(s ) denotes the additive bias and b(s ) denotes the multiplicative bias.
The error term, ‰(s ), is assumed to be a white noise process given by N(0, Û2

‰).
However, the computer model output is provided in a grid, A1, . . . , AJ so
the point level process is converted to a grid level one by the stochastic inte-
gral (18.1) for the model (18.4), i.e.

Q(Aj ) =
1

|Aj |

[∫
Aj

a(s ) ds +
∫

Aj

b(s )Y(s ) ds +
∫

Aj

‰(s ) ds

]
.

It is acknowledged that unstable model fitting accrues to the case where we
have spatially varying b(s ) so b(s ) = b is adopted. Spatial prediction at a new
location s ′ is done through the posterior predictive distribution p(Y(s ′)|Z, Q)
where Z denote all the station data and Q denote all the grid-level computer
output Q(A1), . . . , Q(AJ ).

This fusion strategy becomes computationally infeasible in the setting of
fusing say, CMAQ data at 12 km2 grid cells for the eastern United States with
station data for this region. We have a very large number of grid cells with a rel-
atively sparse number of monitoring sites. An enormous amount of stochastic
integration is required. In this regard, a dynamic implementation over many
time periods becomes even more infeasible. Recently Berrocal et al. (2008)
have shown that the fusion strategy can be outperformed by their proposed
downscaling approach both in terms of computing speed and out-of-sample
validation.

18.3.2 Fusion modelling by upscaling

While the Fuentes and Raftery (2005) approach models at the point level, the
strategy in McMillan et al. (2008) scales up to, models at, the grid cell level.
In this fashion, computation is simplified and fusion with space-time data is
manageable.

In particular, suppose that we have, say, n monitoring stations. As before,
let Q(Aj ) denote the CMAQ output value for cell Aj while ZAj (si ) denotes the
station data for site si within cell Aj , i = 1, . . . , k j . Of course, for most of the
j ’s, k j will be 0 since n � J . Let Y(Aj ) denote the true value for cell Aj .

Then, paralleling (18.2) and (18.4), for each j = 1, . . . , J,

ZAj (si ) = Y(Aj ) + ÂAj (si ), i = 1, . . . , k j (18.5)
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and

Q(Aj ) = Y(Aj ) + b(Aj ) + „(Aj ). (18.6)

In (18.6), the CMAQ output is modelled as varying around the true value
with a bias term, denoted by b(Aj ), specified using a B-spline model. Also,
the Â’s are assumed to be independently and identically distributed and so
are the „’s, each with a respective variance component. So, the station data
and the CMAQ data are conditionally independent given the true surface.
Finally, the true surface is modeled analogously to (18.3). But now, the Á’s are
given a CAR specification (see, e.g. Banerjee et al., 2004). For space-time data,
McMillan et al. (2008) offer a dynamic version of this approach, formulated by
assuming a dynamic CAR specification for the Á’s. They illustrate with a fusion
for the year 2001.

18.4 A downscaling approach

Very recently, Sahu et al. (2008) proposed a modelling approach that avoids
the computationally demanding stochastic integrations required in Fuentes
and Raftery (2005) but models at the point rather than the grid cell level as
in McMillan et al. (2008). In particular, they formalize a latent atmospheric
process which is modeled at two different scales, at the point level to align with
the station data and at the grid cell level to align with the resolution for the
computer model output. The models at these two scales are connected through
a measurement error model (MEM). The latent processes are introduced to
capture point masses at 0 with regard to chemical deposition while the MEM
circumvents the stochastic integration in (18.1). In particular, the point level
observed data represent ‘ground truth’ while gridded CMAQ output are antic-
ipated to be biased. As a result, the MEM enables calibration of the CMAQ
model. The opposite problem of disaggregation, i.e. converting the grid level
computer output Q(Aj ) to point level ones, Q(si ) is not required. The only
assumption is that Q(Aj ) is a reasonable surrogate for Z(si ) if the site si is
within the grid cell Aj . In this sense, the approach is a downscaler, scaling the
grid cell level CMAQ data to the point-level station data.

Sahu et al. (2008) model the above fusion approach in a dynamic setting mod-
elling weekly chemical deposition data over a year. They utilize precipitation
information to model wet deposition since there can be no deposition without
precipitation. They also handle occurrences of zero values in both precipitation
and deposition. They introduce a latent space-time atmospheric process which
drives both precipitation and deposition as assumed in the mercury deposition
modelling of Rappold et al. (2008). However, Rappold et al. do not address
the fusion problem with modeled output. Rather, they used a point level joint
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process model, specified conditionally for the atmospheric, precipitation and
deposition processes. Sahu et al. illustrate their methods separately for both wet
sulfate and wet nitrate deposition in the eastern United States.

18.4.1 The modelling detail

Here we present detail for the static version of the dynamic spatial model devel-
oped in Sahu et al. (2008). Let R(si ) and Z(si ) denote the observed precipitation
and deposition respectively at a site si , i = 1, . . . , n. We suppose that R(si ) and
Z(si ) are driven by a point level latent atmospheric process, denoted by V (si ),
and both take the value zero if V (si ) < 0 to reflect that there is no deposition
without precipitation. That is,

R(si ) =

{
exp

{
U(si )

}
if V (si ) > 0

0 otherwise,
(18.7)

and

Z(si ) =

{
exp

{
Y(si )

}
if V (si ) > 0

0 otherwise.
(18.8)

The random variables U(si ) and Y(si ) are thus taken as log observed precipita-
tion and deposition respectively when V (si ) > 0. The models described below
will specify their values when V (si ) ≤ 0 and/or the corresponding R(si ) or Z(si )
are missing.

Similar to (18.8) we suppose that the CMAQ model output at grid cell Aj ,
Q(Aj ), is positive if an areal level latent atmospheric process, denoted by Ṽ (Aj ),
is positive,

Q(Aj ) =

{
exp

{
X(Aj )

}
if Ṽ (Aj ) > 0

0 otherwise.
(18.9)

The values of X(Aj ) when Ṽ (Aj ) ≤ 0 will be given by the model described
below. As computer model output, there are no missing values in the Q(Aj ).

Let R, Z, and Q denote all the precipitation values, wet deposition values
and the CMAQ model output, respectively. Similarly define the vectors U, V ,
and Y collecting all the elements of the corresponding random variable for i =
1, . . . , n. Let X and Ṽ denote the vectors collecting the elements X(Aj ) and
Ṽ (Aj ), j = 1, . . . , J , respectively.

The first stage likelihood implied by the definitions (18.7), (18.8) and (18.9)
is given by:

p(R, Z, Q|U, Y, X, V, Ṽ ) = p(R|U, V ) × p(Z|Y, V ) × p(Q|X, Ṽ ) (18.10)
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which takes the form

n∏
i=1

{
1exp(u(si ))1exp(y(si )) I(v(si ) > 0)

} J∏
j =1

{
1exp(x(Aj )) I(ṽ(Aj ) > 0)

}

where 1x denotes a degenerate distribution with point mass at x and I(·) is the
indicator function.

18.4.2 Second stage specification

In the second stage of modelling we begin by specifying a spatially coloured
regression model for log-precipitation based on the latent process V (si ). In
particular, we assume the model:

U(si ) = ·0 + ·1V (si ) + ‰(si ), i = 1, . . . , n (18.11)

where ‰ = (‰(s1), . . . , ‰(sn))′ is an independent GP following the N(0, �‰) distri-
bution; �‰ has elements Û‰(i, j ) = Û2

‰ exp(−ˆ‰di j ), the usual exponential covari-
ance function, where di j is the geodetic distance between sites si and s j . Using
vector notation, the above specification is equivalently written as:

U ∼ N (·0 + ·1V, �‰) .

To model Y(si ), we assume that:

Y(si ) = ‚0 + ‚1U(si ) + ‚2V (si ) +
{
b0 + b(si )

}
X(Aki ) + Á(si ) + Â(si ), (18.12)

for i = 1, . . . , n where, unless otherwise mentioned, Aki is the grid cell which
contains the site si .

The error terms Â(si ) are assumed to follow N(0, Û2

Â ) independently, provid-
ing the so-called nugget effect. The reasoning for the rest of the specification
in (18.12) is as follows. The term ‚1U(si ) is included because of the strong lin-
ear relationships between log-deposition and log-precipitation, see Figure 18.3
below. The term ‚2V (si ) captures any direct influence of the atmospheric pro-
cess V (si ) on Y(si ) in the presence of precipitation.

It is anticipated that the relationship between the station data and the CMAQ
model output will be roughly linear but that this relationship may vary locally.
To specify a rich class of locally linear models we may think of a spatially
varying slope for the regression of Y(si ) on log-CMAQ values X(Aj ), specified as{
b0 + b(si )

}
X(Aki ) in (18.12). Writing b = (b(s1), . . . , b(sn))′ we propose a mean

0 GP for b, i.e.

b ∼ N(0, �b)

where �b has elements Ûb(i, j ) = Û2

b exp(−ˆbdi j ).
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The term Á(si ) provides a spatially varying intercept which can also be inter-
preted as a spatio-temporal adjustment to the overall intercept parameter ‚0. We
assume that

Á ∼ N(0, �Á),

where Á = (Á(s1), . . . , Á(sn))′ and �Á has elements ÛÁ(i, j ) = Û2

Á exp(−ˆÁdi j ). The
regression model (18.12) is now equivalently written as:

Y ∼ N
(

,̌ Û2

Â In
)

where Y = (Y(s1), . . . , Y(sn)) and ˇ = ‚0 + ‚1u + ‚2v + b0x + Xmb + Á where x is
the n-dimensional vector with the i th element given by x(Aki ) and Xm is a
diagonal matrix whose i th diagonal entry is x(Aki ), i = 1, . . . , n and In is the
identity matrix of order n.

The CMAQ output X(Aj ) is modelled using the latent process Ṽ (Aj ) as
follows:

X(Aj ) = „0 + „1Ṽ (Aj ) + ¯(Aj ), j = 1, . . . , J . (18.13)

where ¯(Aj ) ∼ N(0, Û2

¯) independently for all j = 1, . . . , J , and Û2

¯ is unknown.
In vector notation, this is given by:

X ∼ N
(
„0 + „1Ṽ , Û2

¯ IJ

)

where as before, X = (X(A1), . . . X(AJ ))′ and Ṽ = (Ṽ (A1), . . . Ṽ (AJ ))′, see the
partitioning of Ṽ below equation (18.14) regarding the order of the grid cell
indices 1, . . . , J .

We now turn to specification of the latent processes V (si ) and Ṽ (Aj ). Note
that it is possible to have Z(si ) > 0 and Q(Aki ) = 0 and vice versa since Q(Aki ) is
the output of a computer model which has not used the actual observation Z(si ).
This implies that V (si ) and Ṽ (Aki ) can be of different signs. To accommodate
this flexibility and to distinguish between the point and areal processes we
assume the simple measurement error model:

V (si ) ∼ N
(
Ṽ (Aki ), Û

2

v

)
, i = 1, . . . , n (18.14)

where Û2

v is unknown. Without loss of generality we write Ṽ = (Ṽ (1), Ṽ (2)) where
the n-dimensional vector Ṽ (1) contains the values for the grid cells where the
n observation sites are located and Ṽ (2) contains the values for the remaining
J − n grid cells. The specification (18.14) can now be written equivalently as

V ∼ N
(
Ṽ (1), Û2

v In
)
.
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The latent process Ṽ (Aj ) is assumed to follow a conditionally autoregressive
(CAR) process in space (see e.g. Banerjee et al., 2004). That is,

Ṽ (Aj ) ∼ N

(
J∑

i=1

h j i Ṽ (Ai ),
Û2

Ê

mj

)
(18.15)

where

h j i =

{
1

mj
if i ∈ ∂ j

0 otherwise

and ∂ j defines the mj neighbouring grid cells of the cell Aj . The above improper
CAR specification can be written as:

p
(
Ṽ |Û2

Ê

) ∝ exp
{
−1

2

Ṽ
′
D−1(I − H)Ṽ

}
(18.16)

where D is diagonal with the j th diagonal entry given by Û2

Ê/mj . In summary,
the second stage specification is given by:

p (Y|U, V, X, Á, b, Ë) × p (Á|Ë) × p (U|V, Ë) × p
(
Ṽ |Ë)

×p (V |Ë) × p
(
X |Ṽ , Ë

)× p (b|Ë)

where Ë denote the parameters ·0, ·1, ‚0, ‚1, ‚2, b0, „0, „1, Ò, Û2

‰ , Û2

b , Û2

Á, Û2

Â , Û2

¯,
Û2

v and Û2

Ê . See Appendix B for the prior distributions, the form of the joint
posterior distribution and the full conditional distributions needed for Gibbs
sampling.

18.4.3 Spatial interpolation at a new location

We can interpolate the deposition surface using the above models as follows.
Consider the problem of predicting Z(s ′) at any new location s ′ falling on the
grid cell A′. The prediction is performed by constructing the posterior predictive
distribution of Z(s ′) which in turn depends on the distribution of Y(s ′) as
specified by equation (18.12) along with the associated V (s ′). We estimate the
posterior predictive distribution by drawing samples from it.

Several cases arise depending on the nature of information available at the
new site s ′. If precipitation information is available and there is no positive
precipitation, i.e. r (s ′) = 0, then we have Z(s ′) = 0 and no further sampling
is needed, since there can be no deposition without precipitation. Now sup-
pose that there is positive precipitation, i.e. r (s ′) > 0, then set u(s ′) = log(r (s ′)).
We need to generate a sample Y(s ′). We first generate V (s ′) ∼ N(Ṽ (A′), Û2

v)
following the measurement error model (18.14). Note that Ṽ (A′) is already
available for any grid cell A′ (within the study region) from model fitting,
see equation (18.15). Similarly, X(A′) is also available either as the log of the
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CMAQ output, log(Q(A′)), if Q(A′) > 0 or from the MCMC imputation when
Q(A′) = 0, see Appendix B. To sample Á(s ′) we note that:(

Á(s ′)
Á

)
∼ N

[(
0

0

)
, Û2

Á

(
1 SÁ,12

SÁ,21 SÁ

)]
,

where SÁ,12 is 1 × n with the i th entry given by exp{−ˆÁd(si , s ′)} and SÁ,21 =
S′

Á,12
. Therefore,

Á(s ′)|Á, Ë ∼ N
[

SÁ,12S−1

Á Á, Û2

Á

(
1 − SÁ,12S−1

Á SÁ,21

)]
. (18.17)

If the term b(s ) is included in the model we need to simulate b(s ′) conditional
on b and model parameters. To do this we note that:(

b(s ′)
b

)
∼ N

[(
0

0

)
, Û2

b

(
1 Sb,12

Sb,21 Sb

)]
,

where Sb,12 is 1 × n with the i th entry given by exp
{−ˆÁd(si , s ′)

}
and Sb,21 =

S′
b,12

. Therefore,

b(s ′)|b, Ë ∼ N
[
Sb,12S−1

b b, Û2

b

(
1 − Sb,12S−1

b Sb,21

)]
. (18.18)

If it is desired to predict Z(s ′) where R(s ′) is not available, we proceed as
follows. We generate V (s ′) ∼ N(Ṽ (A′), Û2

v) following the measurement error
model (18.14). If this V (s ′) < 0, then we set both R(s ′) and Z(s ′) to zero. If,
however, V (s ′) > 0 we need to additionally draw U(s ′) using the precipitation
model (18.11). For this we note that,(

U(s ′)
U

)
∼ N

[(
·0 + ·1V (s ′)
·0 + ·1V

)
, Û2

‰

(
1 S‰,12

S‰,21 S‰

)]
,

where S‰,12 is 1 × n with the i th entry given by exp
{−ˆ‰d(si , s ′)

}
and S‰,21 =

S′
‰,12

. Therefore,

U(s ′)|U, Ë ∼ N
[
Ï(s ′), Û2

‰

(
1 − S‰,12S−1

‰ S‰,21

)]
, (18.19)

where

Ï(s ′) = ·0 + ·1V (s ′) + S‰,12S−1

‰ (U − ·0 − ·1v).

If Z(s ′) is not inferred to be zero then we set it to be exp
{
Y(s ′)

}
. If we want

the predictions of the smooth deposition surface without the nugget term we
simply ignore the nugget term Â(s ′) in generating Y(s ′).

18.4.4 An illustration

We illustrate with weekly wet deposition data for 2001 from 120 sites mon-
itored by the National Atmospheric Deposition Program (NADP, nadp.
sws.uiuc.edu) in the eastern United States, see Figure 18.1. We analyze data
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Fig. 18.1 A map of the eastern US with the 120 NADP sites plotted as points.

from the year 2001 since this is the year for which the most recent outputs from
the CMAQ model for wet chemical deposition are currently available. These
outputs are available for J = 33, 390 grid cells covering the study region. Our
approach is applied separately to the wet sulfate and wet nitrate data. Since
there is no need to make any simultaneous inference, a joint model is not
required. There is high correlation between the two types of deposition but
this is expected since both are driven by precipitation. To facilitate spatial
interpolation, we also use weekly precipitation data obtained from a network
of 2827 sites located inside the study region.

We model the data separately for the week of January 16–22 and May 22–
28 in 2001 to make a comparison between a week in the winter and another
one in the summer. Deposition data for these two weeks show significant
differences according to classical t-tests, see Figure 18.2. This confirms the
fact that the deposition levels are generally higher during the wet summer
months and lower during the drier winter months, see e.g. Brook et al. (1995).
However, in both the weeks there is strong linear relationship between depo-
sition and precipitation (on the log-scale), see Figure 18.3. There is also some,
although not very strong, linear relationship between observed NADP data and
the CMAQ output for the corresponding grid cell containing the NADP site,
see Figure 18.4. Deposition and precipitation values that are 0 are ignored in
obtaining the above Figures 18.3 and 18.4.

The spatial interpolation maps are provided in Figure 18.5 for sulfate and
Figure 18.7 for nitrate. As seen in Figure 18.2 the model has reconstructed
higher levels of both deposition types for May 22–28 than that for January
16–22. Observe that the grey scales are different for the two weeks in each
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Fig. 18.2 Boxplot of depositions for two weeks in 2001 from 120 NADP sites: (a) wet sulfate and
(b) wet nitrate.
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Fig. 18.3 Plot of log deposition against log precipitation in 2001: (a) wet sulfate for January 16–22,
(b) wet sulfate for May 22–28, (c) wet nitrate for January 16–22, (d) wet nitrate for May 22–28.
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Fig. 18.4 Plot of log deposition against log CMAQ value for the cell containing the corresponding
NADP site in 2001: (a) wet sulfate for January 16–22, (b) wet sulfate for May 22–28, (c) wet nitrate for
January 16–22, (d) wet nitrate for May 22–28.

of the Figures 18.5 and 18.7. In the corresponding week similar spatial pat-
terns are seen for the sulfate and nitrate deposition values, as expected. Fig-
ures 18.6 and 18.8 provide the standard deviation maps for the predictions
in Figures 18.5 and 18.7. From these figures we conclude that higher levels
of deposition values are predicted with higher levels of uncertainty which is
common in this sort of data analysis.

Parameter estimates, model choice analysis, and full spatio-temporal analysis
of all the 52 week’s dataset with a dynamic version of the foregoing model is
presented in the paper of Sahu et al. (2008), and hence are not repeated here.
They also discuss methods for choosing the decay parameter values ˆ‰, ˆb and
ˆÁ. In addition, they validate the models with set aside data and, by suitable
aggregation, obtain total annual deposition maps along with their uncertainties.

18.5 Further discussion

A related question of interest is to estimate dry deposition which is defined
as the exchange of gases, aerosols, and particles between the atmosphere and
earth’s surface. Such analysis will enable prediction of total (wet plus dry) sulfur
and nitrogen deposition. Using the total predictive surface it will be possible
to estimate deposition ‘loadings’ as the integrated volume of total deposition
over ecological regions of interest. If successful, this effort will lead to the first
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Fig. 18.5 Model interpolated maps for sulfate deposition for two weeks in 2001: top panel for January
16–22 and bottom panel for May 22–28. Observed deposition values from some selected sites are
superimposed; the data from the remaining sites are not shown to enhance readability.
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Fig. 18.6 The standard deviation maps for the predictions in Figure 18.5.
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Fig. 18.7 Model interpolated maps for nitrate deposition for two weeks in 2001: top panel for January
16–22 and bottom panel for May 22–28. Observed deposition values from some selected sites are
superimposed; the data from the remaining sites are not shown to enhance readability.
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Fig. 18.8 The standard deviation maps for the predictions in Figure 18.7.
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ever estimation of total deposition loadings, perhaps the most critical quantity
for making ecological assessments. Future work will also address trends in
deposition to assess whether regulation has been successful.

Appendix

A. Gaussian processes

Gaussian processes play a key role in modeling for spatial and spatio-temporal
data. By now, there is an extensive literature on formalizing and characterizing
stochastic processes along with analysis their behaviour. However, in a practical
setting, ensuring that a stochastic process has been properly defined when the
index of the process is over a continuum, say a spatial region, requires care.
The primary issue is to guarantee that the joint distribution associated with
the entire collection of random variables is consistently defined. The usual
strategy is to define the process through its finite dimensional distributions
and verify that these distributions satisfy a consistency condition. In this regard,
the Gaussian process becomes very attractive since its finite dimensional
distributions are all multivariate normals. Specification over the set D
only requires a mean function, Ï(s ), s ∈ D and a valid covariance function,
C(s , s ′) = Cov(Y(s ), Y(s ′)), the latter supplying the covariance matrix associated
with any finite set of locations.

The convenient conditional distribution theory associated with the multi-
variate normal distribution is at the heart of kriging (spatial prediction); the
convenient marginal distributions facilitate local model specification. Moreover,
the only finite dimensional distributions within the class of jointly elliptical
distributions that are able to support a stochastic process over a continuum
are normals (or scale mixtures of normals).

Additionally, spatial dependence is typically introduced into the modeling in
the form of spatial random effects. In general, random effects are modeled as
normal variables so a multivariate normal specification for such effects in a spa-
tial setting seems appropriate. In this regard, hierarchical modelling naturally
emerges. The spatial random effects are introduced at the second stage of mod-
elling. They appear in the mean (perhaps on a transformed scale if the first stage
specification is non-Gaussian as in a spatial generalized linear model such as a
binary process where the observation at any location is a 0 or a 1). In this regard,
there is practical interest in these random effects. Given their prior specifica-
tion, the associated revised posterior distributions are of interest with regard to
‘seeing’ a spatial pattern, again emphasizing the role of Bayesian inference in
spatial analysis. While the genesis of spatial modelling for data over a contin-
uum was based primarily on simple least squares theory, modern, fully model-
based spatial analysis is almost entirely done within a Bayesian framework.
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Specification of a valid covariance function is a separate issue. Such a func-
tion must be positive definite, i.e. for any number of and set of spatial locations,
the resultant covariance matrix must be positive definite. By now there is a rich
literature regarding the choice of such functions in space, enabling isotropy,
stationarity, and non-stationarity, and in space time, enabling space-time depen-
dence in association. See, e.g. the book of Banerjee et al. (2004) and the recent
paper of Stein (2005) and references therein.

Finally, Bayesian computation for space and space-time data analysis is
much more demanding than usual analysis. Of course, this is true in general,
for fitting hierarchical models but the rewards of full inference will usually
justify the effort. Bayesian software to fit spatial data models includes Win-
bugs (http://www.mrc-bsu.cam.ac.uk/bugs/), and two R-packages Geo-R
(Ribeiro and Diggle, 1999) and and SpBayes (Finley et al., 2008).

B. Distributions for Gibbs sampling

Prior and posterior distributions

We complete the Bayesian model specification by assuming prior distributions
for all the unknown parameters. We assume that, a priori, each of ·0, ·1,
‚0, ‚1, ‚2, b0, „0, „1 is normally distributed with mean 0 and variance 10

3,
essentially a flat prior specification. The inverse of the variance components

1

Û2

‰

, 1

Û2

b
, 1

Û2

Á

, 1

Û2

Â

, 1

Û2

¯

, 1

Û2

v

, and 1

Û2

Ê

, are all assumed to follow the Gamma dis-

tribution G(Ì, Î) having mean Ì/Î. In our implementation we take Ì = 2 and
Î = 1 implying that these variance components have prior mean 1 and infinite
variance.

The log of the likelihood times prior in the second stage specification up to
an additive constant is given by:

− n

2

log
(
Û2

Â

)− 1

2Û2

Â

(y − ˇ)′(y − ˇ) − n

2

log
(
Û2

Á

)
− 1

2Û2

Á

Á′S−1

Á Á

− n

2

log
(
Û2

‰

)− 1

2Û2

‰

(u − ·0 − ·1v)′S−1

‰ (u − ·0 − ·1v)

− n

2

log
(
Û2

v

)− 1

2Û2

v

(v − ṽ(1))′(v − ṽ(1))′

− J

2

log
(
Û2

¯

)
− 1

2Û2

¯

(x − „0 − „1ṽ)′ (x − „0 − „1ṽ)

− J

2

log
(
Û2

Ê

)− 1

2

ṽ′ D−1(I − H)ṽ

− n

2

log
(
Û2

b

)− 1

2Û2

b

b′S−1

b b + log(p(Ë))

where p(Ë) is the prior distribution of Ë and �‰ = Û2

‰ S‰, �b = Û2

b Sb, �Á = Û2

ÁSÁ.
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Handling of the missing values

Note that the transformation equation (18.8) does not define a unique value
of Y(si ) and in addition, there will be missing values corresponding to the
missing values in Z(si ). Any missing value of Y∗(si ) is sampled from the
model (18.12).

The sampling of the missing U∗(si ) for the precipitation process is a bit
more involved. The sampling of the missing values must be done using the
model (18.11) conditional on all the parameters. Since this model is a spatial
model we must use the conditional distribution of U∗(si ) given all the U(s j )
values for j = 1, . . . , n and j =/ i . This conditional distribution is obtained using
the covariance matrix �‰ of ‰ and is omitted for brevity.

Similarly, equation (18.9) does not define unique values of X(Aj ) when
Q(Aj ) = 0. Those values, denoted by X∗(Aj ), are sampled using the model
equation (18.13), X∗(Aj ) is sampled from N(„0 + „1ṽ(Aj ), Û2

¯).

Conditional posterior distribution of Ë

Straightforward calculation yields the following full conditional distributions:

1

Û2

Â

∼ G

(
n

2

+ Ì, Î +
1

2

(y − ˇ)′(y − ˇ)
)

,

1

Û2

b

∼ G

(
n

2

+ Ì, Î +
1

2

b′S−1

b b

)
,

1

Û2

Á

∼ G

(
n

2

+ Ì, Î +
1

2

Á′S−1

Á Á

)
,

1

Û2

‰

∼ G

(
n

2

+ Ì, Î +
1

2

(u − ·0 − ·1v)′S−1

‰ (u − ·0 − ·1v)
)

,

1

Û2

¯

∼ G

(
J

2

+ Ì, Î +
1

2

(x − „0 − „1ṽ)′ (x − „0 − „1ṽ)
)

,

1

Û2

v

∼ G

(
n

2

+ Ì, Î +
1

2

(v − ṽ(1))′(v − ṽ(1))
)

,

1

Û2

Ê

∼ G

⎛
⎝ J

2

+ Ì, Î +
1

2

J∑
j =1

{
mj (Ṽ (Aj ) − Ï j )2

}⎞⎠
where Ï j =

∑J
i=1

h j i Ṽ (Ai ).
Let ‚ = (‚0, ‚1, ‚2) and G = (1, u, v) so that G is an n × 3 matrix. The full

conditional distribution of ‚ is N(�˜, �) where

�−1 =
1

Û2

Â

G′G + 10
−3 I3, ˜ =

1

Û2

Â

G′(y − b0x − Xmb − Á).
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The full conditional distribution of b0 is N(�˜, �) where

�−1 =
1

Û2

Â

x′x + 10
−3, ˜ =

1

Û2

Â

x′(y − ‚0 − ‚1u − ‚2v − Xmb − Á).

The full conditional distribution of b is N(�˜, �) where

�−1 =
1

Û2

Â

X ′ X + �−1

b , ˜ =
1

Û2

Â

X ′(y − ‚0 − ‚1u − ‚2v − b0x − Á).

The full conditional distribution of Á is N(�˜, �) where

�−1 =
In

Û2

Â

+ �−1

Á , ˜ =
1

Û2

Â

(y − ‚0 − ‚1u − ‚2v − b0x − Xmb).

Let G = (1, v) so that now G is a n × 2 matrix. The full conditional distribution
of · = (·0, ·1) is N(�˜, �) where

�−1 = G′�−1

‰ G + 10
−3 I2, ˜ = G′�−1

‰ u.

Let G = (1, ṽ) so that now G is a J × 2 matrix. The full conditional distribution
of „ = („0, „1) is N(�˜, �) where

�−1 =
1

Û2

¯

G′G + 10
−3 I2, ˜ = G′x.

Conditional posterior distribution of V

Note that due to the missing and zero precipitation values the full conditional
distribution of V will be in a restricted space. First, the unrestricted full condi-
tional distribution of V is N(�˜, �) where

�−1 = ‚2

2

In

Û2

Â

+ ·2

1
�−1

‰ +
In

Û2

v

, and ˜ =
‚2

Û2

Â

a + ·1�
−1

‰ (u − ·0) +
1

Û2

v

ṽ(1),

where a = y − ‚0 − ‚1u − b0x − Xmb − Á. From this n-dimensional joint dis-
tribution we obtain the conditional distribution V (si ) ∼ N(Ïi , �i ), say. If the
precipitation value, r (si ), is missing then there will be no constraint on V (si ) and
we sample V (si ) unrestricted from N(Ïi , �i ). If on the other hand the observed
precipitation value is zero, r (si ) = 0, we must sample V (si ) to be negative, i.e. we
sample from N(Ïi , �i )I(V (si ) < 0). Corresponding to non-zero precipitation
value r (si ) > 0 we sample V (si ) from N(Ïi , �i )I(V (si ) > 0).
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Conditional posterior distribution of Ṽ

The full conditional distribution of Ṽ = (Ṽ (1), Ṽ (2)) is N(�˜, �) where

�−1 =

(
In

Û2

v

0

0 0

)
+ „2

1

IJ

Û2

¯

+ D−1(I − H),

˜ =

(
1

Û2

v

v

0

)
+

„1

Û2

¯

(x − „0).

Note that this full conditional distribution is a J -variate normal distribution
where J is possibly very high (33,390 in our example) and simultaneous update
is computationally prohibitive. In addition, we need to incorporate the con-
straints implied by the first stage likelihood specification (18.10).

The partitioning of Ṽ , however, suggests an immediate univariate sampling
scheme detailed below. First, note that the conditional prior distribution for
Ṽ (Aj ) from the vectorized specification (18.16), as calculated above is given by
N(Ó j ,˘

2

j ) where:

˘2

j = Û2

Ê

1

mj
and Ó j =

J∑
i=1

h j i ṽ(Ai ).

Now for each component Ṽ (Aj ) of Ṽ (1) we extract the full conditional distri-
bution to be viewed as the likelihood contribution from the joint distribution
N(�(1)˜(1), �(1)) where

�−1

(1) =
In

Û2

v

+ „2

1

In

Û2

¯

and ˜(1) =
1

Û2

v

v +
„1

Û2

¯

(x(1) − „0),

where x = (x(1), x(2)), partitioned analogusly to Ṽ . This conditional likelihood
contribution is given by N(Ï j , �

2) where

Ï j = �2
(
ṽ(Aj )/Û2

v + „1(x(Aj ) − „0

)
/Û2

¯, �2 = 1/
(

1/Û2

v + 1/Û2

¯

)
.

The conditional likelihood contribution for each component of Ṽ (2) is the nor-
mal distribution N(Ï j , �

2) where

Ï j =
x(Aj ) − „0

„1

and �2 =
Û2

¯

„2

1

.

Now the unconstrained full conditional distribution of Ṽ (Aj ), according to
the second stage likelihood and prior specification, is obtained by combining
the likelihood contribution N(Ï j , �

2) and the prior conditional distribution
N(Ó j ,˘

2

j ) and is given by N(� j ˜ j ,� j ) where

�−1

j = �−2 + ˘−2

j , ˜ j = �−2Ï j + ˘−2

j Ó j .
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In order to respect the constraints implied by the first stage specification we
simulate the Ṽ (Aj ) to be positive if x(Aj ) > 0 and negative otherwise.
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