Section 11.3: Assessing trend in cancer rates in the US

Sujit K. Sahu

University of Southampton

2022-03-30

Abstract

This file contains all the code for reproducing the figures and tables for assessing trend in US cancer rates as discussed in Section 11.3.

## Note the start time
start.time<-proc.time()[3]
# figurepath <- "YourPath"   # Folder to save or read the figures from
# filepath <- "YourFilePath" # Folder to save or read the tables from 
figurepath <- "figures/chap11figures/usa/"
filepath <- "txttables/"
dpath <- "datafiles/" # Folder containing the data files 
longrun <- FALSE  # Should we run the model to check the results. 
# If FALSE we use the results, e.g. tables, figures and model fits from previous runs  
if (!longrun) load(file="mcmc_output_files/uscancer/m422.RData")
load(file=paste0(dpath, "C11us48cancerdata.RData"))
colpalette <- c("dodgerblue4",  "dodgerblue2",  "firebrick2",   "firebrick4",   "purple")     
library(bmstdr)
## Warning in .recacheSubclasses(def@className, def, env): undefined subclass
## "numericVector" of class "Mnumeric"; definition not updated
library(ggplot2)
library(RColorBrewer)
library(ggpubr)
library(doBy)
library(usmap)

1 Code to reproduce Figures in Section 11.4


head(us48cancertot)
##          Name state fips  totcount   totpop  totrate   AIAN.HL  AIAN.NHL
## 1     Alabama    AL    1  25611.33  4736261 540.1333 0.1272515 0.5892589
## 2     Arizona    AZ    4  29450.87  6363790 462.0467 1.3033103 4.2843893
## 3    Arkansas    AR    5  15938.33  2894066 550.0467 0.1995402 0.7781714
## 4  California    CA    6 165372.00 37325590 442.7733 1.2801805 0.5671331
## 5    Colorado    CO    8  22118.60  5047750 437.6800 0.9988665 0.7593700
## 6 Connecticut    CT    9  21617.73  3555387 607.9467 0.2868551 0.2620113
##       API.HL   API.NHL    BAA.HL   BAA.NHL  White.HL White.NHL
## 1 0.08855458  1.264443 0.2878583 26.567691  3.073277  68.00167
## 2 0.37435044  3.157346 0.6966057  4.198725 27.147177  58.83810
## 3 0.08576009  1.550466 0.2291451 15.805733  5.679722  75.67146
## 4 0.81832412 14.032092 0.8891200  6.373004 34.193313  41.84683
## 5 0.25679949  3.199021 0.5706648  4.324408 18.605895  71.28497
## 6 0.18256169  4.045786 1.5652350 10.071039 11.344880  72.24163
plot_usmap(data = us48cancertot, values = "totrate", color = "red", exclude=c("AK", "HI")) +
  # scale_fill_continuous(name = "Cancer rate", label = scales::comma) +
  scale_fill_gradientn(colours=colpalette,na.value="black",limits=range(us48cancertot$totrate),
  name = "Cancer rate") +
  theme(legend.position = "right")


ggsave(paste0(figurepath, "uscancer_rate.png"),  width=8.27, height=3.44, dpi=300)


us48cancertot$white <- us48cancertot$White.HL + us48cancertot$White.NHL
com1 <- c("gray15","gray17","gray19","gray21",  "white")#colour palette

plot_usmap(data = us48cancertot, values = "White.NHL", color = "red", exclude=c("AK", "HI")) +
  # scale_fill_continuous(name = "Cancer rate", label = scales::comma) +
  scale_fill_gradientn(colours=com1,na.value="black",limits=range(us48cancertot$White.NHL),
                       name = "Percentage of White") +
  theme(legend.position = "right")

ggsave(paste0(figurepath, "percentage_of_white.png"),  width=8.27, height=3.44, dpi=300)

cor(us48cancertot$totrate, us48cancertot$white)
## [1] 0.1255233

cor(us48cancertot$totrate, us48cancertot$White.NHL)
## [1] 0.4569091

plot_usmap(data = us48cancertot, values = "BAA.NHL", color = "red", exclude=c("AK", "HI")) +
  # scale_fill_continuous(name = "Cancer rate", label = scales::comma) +
  scale_fill_gradientn(colours=rev(com1),na.value="black",limits=range(us48cancertot$BAA.NHL),
                       name = "Percentage") +
  theme(legend.position = "right")


ggsave(paste0(figurepath, "baa_nhl.png"),  width=8.27, height=3.44, dpi=300)


## Now the plots
# Plot the observed smr for all the years


head(us48cancertot)
##          Name state fips  totcount   totpop  totrate   AIAN.HL  AIAN.NHL
## 1     Alabama    AL    1  25611.33  4736261 540.1333 0.1272515 0.5892589
## 2     Arizona    AZ    4  29450.87  6363790 462.0467 1.3033103 4.2843893
## 3    Arkansas    AR    5  15938.33  2894066 550.0467 0.1995402 0.7781714
## 4  California    CA    6 165372.00 37325590 442.7733 1.2801805 0.5671331
## 5    Colorado    CO    8  22118.60  5047750 437.6800 0.9988665 0.7593700
## 6 Connecticut    CT    9  21617.73  3555387 607.9467 0.2868551 0.2620113
##       API.HL   API.NHL    BAA.HL   BAA.NHL  White.HL White.NHL    white
## 1 0.08855458  1.264443 0.2878583 26.567691  3.073277  68.00167 71.07494
## 2 0.37435044  3.157346 0.6966057  4.198725 27.147177  58.83810 85.98527
## 3 0.08576009  1.550466 0.2291451 15.805733  5.679722  75.67146 81.35118
## 4 0.81832412 14.032092 0.8891200  6.373004 34.193313  41.84683 76.04015
## 5 0.25679949  3.199021 0.5706648  4.324408 18.605895  71.28497 89.89087
## 6 0.18256169  4.045786 1.5652350 10.071039 11.344880  72.24163 83.58651
us48cancertot$totcount <- round(us48cancertot$totcount)
a1 <- sum(us48cancertot$totcount)
a2 <- sum(us48cancertot$totpop)
rr <- a1/a2
us48cancertot$exptot <- rr * us48cancertot$totpop
summary(us48cancertot$exptot)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    2926   10453   24135   33637   37189  197084
colnames(us48cancertot)
##  [1] "Name"      "state"     "fips"      "totcount"  "totpop"    "totrate"  
##  [7] "AIAN.HL"   "AIAN.NHL"  "API.HL"    "API.NHL"   "BAA.HL"    "BAA.NHL"  
## [13] "White.HL"  "White.NHL" "white"     "exptot"

us48cancertot$logexptot <- log(us48cancertot$exptot)


head(us48cancer0317)
##   fips state Year totcount  totpop totrate malescount malespop malesrate
## 1    1    AL 2003    21472 4503491   476.8      11228  2179422     515.2
## 2    1    AL 2004    22951 4530729   506.6      12024  2192872     548.3
## 3    1    AL 2005    23342 4565917   511.2      12172  2211403     550.4
## 4    1    AL 2006    24113 4628981   520.9      12798  2243501     570.4
## 5    1    AL 2007    25086 4672840   536.8      13236  2265565     584.2
## 6    1    AL 2008    26093 4718206   553.0      13708  2287949     599.1
##   femalescount femalespop femalesrate    AIAN.HL  AIAN.NHL     API.HL   API.NHL
## 1        10244    2324069       440.8 0.06708129 0.5561019 0.05142677 0.9124255
## 2        10927    2337857       467.4 0.07808898 0.5614108 0.06045385 0.9714331
## 3        11170    2354514       474.4 0.08941301 0.5661292 0.06757400 1.0243107
## 4        11315    2385480       474.3 0.10133980 0.5719185 0.07634510 1.0712509
## 5        11850    2407275       492.3 0.11241558 0.5782351 0.08480924 1.1150392
## 6        12385    2430257       509.6 0.12699742 0.5833997 0.09126350 1.1586819
##      BAA.HL  BAA.NHL White.HL White.NHL unemployment
## 1 0.2035754 26.22443 1.975512  70.00944          6.0
## 2 0.2141819 26.25379 2.147623  69.71302          5.7
## 3 0.2288719 26.26904 2.345592  69.40907          4.5
## 4 0.2426236 26.34064 2.557496  69.03839          4.0
## 5 0.2551981 26.36388 2.771569  68.71885          4.0
## 6 0.2730275 26.41459 2.978441  68.37359          5.7
summary(us48cancer0317$totcount)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    2370    9755   24241   33637   38868  176983
summary(us48cancer0317$unemployment)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.600   4.500   5.400   5.921   7.000  13.700
a1 <- sum(us48cancer0317$totcount)
a2 <- sum(us48cancer0317$totpop)
rr <- a1/a2
us48cancer0317$exptot <- rr * us48cancer0317$totpop
summary(us48cancer0317$exptot)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    2658   10061   23959   33637   38976  208034


mus48cancer0317 <- us48cancer0317
mus48cancer0317$obs_smr <- mus48cancer0317$totcount/mus48cancer0317$exptot

mr <- range(mus48cancer0317$obs_smr)
mr
## [1] 0.6187699 1.3236774
summary(mus48cancer0317$obs_smr)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.6188  0.9578  1.0312  1.0251  1.1107  1.3237

b <- c(-Inf, 0.8, 1.0, 1.2, Inf)
labss <- c("<0.8", "0.8-1", "1-1.2", ">1.2")

mus48cancer0317$catsmrobs <- factor(cut(mus48cancer0317$obs_smr, breaks=b,  labels=labss))
table(mus48cancer0317$catsmrobs)
## 
##  <0.8 0.8-1 1-1.2  >1.2 
##    30   238   397    55
levels(mus48cancer0317$catsmrfit)
## NULL
table(mus48cancer0317$catsmrfit)
## < table of extent 0 >
head(mus48cancer0317)
##   fips state Year totcount  totpop totrate malescount malespop malesrate
## 1    1    AL 2003    21472 4503491   476.8      11228  2179422     515.2
## 2    1    AL 2004    22951 4530729   506.6      12024  2192872     548.3
## 3    1    AL 2005    23342 4565917   511.2      12172  2211403     550.4
## 4    1    AL 2006    24113 4628981   520.9      12798  2243501     570.4
## 5    1    AL 2007    25086 4672840   536.8      13236  2265565     584.2
## 6    1    AL 2008    26093 4718206   553.0      13708  2287949     599.1
##   femalescount femalespop femalesrate    AIAN.HL  AIAN.NHL     API.HL   API.NHL
## 1        10244    2324069       440.8 0.06708129 0.5561019 0.05142677 0.9124255
## 2        10927    2337857       467.4 0.07808898 0.5614108 0.06045385 0.9714331
## 3        11170    2354514       474.4 0.08941301 0.5661292 0.06757400 1.0243107
## 4        11315    2385480       474.3 0.10133980 0.5719185 0.07634510 1.0712509
## 5        11850    2407275       492.3 0.11241558 0.5782351 0.08480924 1.1150392
## 6        12385    2430257       509.6 0.12699742 0.5833997 0.09126350 1.1586819
##      BAA.HL  BAA.NHL White.HL White.NHL unemployment   exptot   obs_smr
## 1 0.2035754 26.22443 1.975512  70.00944          6.0 23779.00 0.9029816
## 2 0.2141819 26.25379 2.147623  69.71302          5.7 23922.82 0.9593769
## 3 0.2288719 26.26904 2.345592  69.40907          4.5 24108.62 0.9682015
## 4 0.2426236 26.34064 2.557496  69.03839          4.0 24441.60 0.9865556
## 5 0.2551981 26.36388 2.771569  68.71885          4.0 24673.18 1.0167314
## 6 0.2730275 26.41459 2.978441  68.37359          5.7 24912.72 1.0473765
##   catsmrobs
## 1     0.8-1
## 2     0.8-1
## 3     0.8-1
## 4     0.8-1
## 5     1-1.2
## 6     1-1.2
dim(mus48cancer0317)
## [1] 720  24
colnames(mus48cancer0317)
##  [1] "fips"         "state"        "Year"         "totcount"     "totpop"      
##  [6] "totrate"      "malescount"   "malespop"     "malesrate"    "femalescount"
## [11] "femalespop"   "femalesrate"  "AIAN.HL"      "AIAN.NHL"     "API.HL"      
## [16] "API.NHL"      "BAA.HL"       "BAA.NHL"      "White.HL"     "White.NHL"   
## [21] "unemployment" "exptot"       "obs_smr"      "catsmrobs"
com <- c("green4", "green2", "yellow", "red2")

i <- 2003
colnames(mus48cancer0317)
##  [1] "fips"         "state"        "Year"         "totcount"     "totpop"      
##  [6] "totrate"      "malescount"   "malespop"     "malesrate"    "femalescount"
## [11] "femalespop"   "femalesrate"  "AIAN.HL"      "AIAN.NHL"     "API.HL"      
## [16] "API.NHL"      "BAA.HL"       "BAA.NHL"      "White.HL"     "White.NHL"   
## [21] "unemployment" "exptot"       "obs_smr"      "catsmrobs"
dim(mus48cancer0317)
## [1] 720  24
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
head(dp)
##    fips state catsmrobs
## 1     1    AL     0.8-1
## 16   10    DE     1-1.2
## 31   12    FL     1-1.2
## 46   13    GA     0.8-1
## 61   16    ID     0.8-1
## 76   17    IL     0.8-1
smr2003 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  #  scale_fill_gradientn(colours=com,na.value="black",limits=mr, name = "smr") +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2003


i <- 2004
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2004 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2004



i <- 2005
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2005 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2005


i <- 2006
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2006 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2006



i <- 2007
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2007 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2007




i <- 2008
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2008 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2008



i <- 2009
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2009 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2009


i <- 2010
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2010 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2010


i <- 2011
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2011 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2011


i <- 2012
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2012 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2012


i <- 2013
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2013 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2013



i <- 2014
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2014 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2014



i <- 2015
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2015 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2015



i <- 2016
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2016 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2016



i <- 2017
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2017 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2017

library(ggpubr)
# a <- get_legend(smr2003, position = "bottom")
a <- get_legend(smr2017, position = c(0.25, 0.1))
ggarrange(
  smr2003, smr2004, smr2005, smr2006, smr2007,
  smr2008, smr2009, smr2010, smr2011, smr2012,
  smr2013, smr2014, smr2015, smr2016, smr2017, as_ggplot(a),
  common.legend = TRUE, legend = "none", nrow = 4, ncol = 4
)


ggsave(filename=paste0(figurepath, "uscancer_obs_smr.png"), device = "png")
## Saving 7 x 5 in image
### Raw SMR's

p2 <- ggplot(data=us48cancer0317, aes(x=Year, y=unemployment, color=state, group=state)) +
  # geom_boxplot() + facet_wrap(~year, ncol=5) +
  geom_line() +
  labs(x="Year", y="Annual unemployment") +
  scale_colour_discrete(guide="none")
# geom_dl(data=dp2, aes(x=Year, y=unemployment, label =state), method = list(dl.combine("last.bumpup")), cex = 0.8)
p2


ggsave(filename=paste0(figurepath, "unemployment.png"))
## Saving 7 x 5 in image

head(us48cancer0317)
##   fips state Year totcount  totpop totrate malescount malespop malesrate
## 1    1    AL 2003    21472 4503491   476.8      11228  2179422     515.2
## 2    1    AL 2004    22951 4530729   506.6      12024  2192872     548.3
## 3    1    AL 2005    23342 4565917   511.2      12172  2211403     550.4
## 4    1    AL 2006    24113 4628981   520.9      12798  2243501     570.4
## 5    1    AL 2007    25086 4672840   536.8      13236  2265565     584.2
## 6    1    AL 2008    26093 4718206   553.0      13708  2287949     599.1
##   femalescount femalespop femalesrate    AIAN.HL  AIAN.NHL     API.HL   API.NHL
## 1        10244    2324069       440.8 0.06708129 0.5561019 0.05142677 0.9124255
## 2        10927    2337857       467.4 0.07808898 0.5614108 0.06045385 0.9714331
## 3        11170    2354514       474.4 0.08941301 0.5661292 0.06757400 1.0243107
## 4        11315    2385480       474.3 0.10133980 0.5719185 0.07634510 1.0712509
## 5        11850    2407275       492.3 0.11241558 0.5782351 0.08480924 1.1150392
## 6        12385    2430257       509.6 0.12699742 0.5833997 0.09126350 1.1586819
##      BAA.HL  BAA.NHL White.HL White.NHL unemployment   exptot
## 1 0.2035754 26.22443 1.975512  70.00944          6.0 23779.00
## 2 0.2141819 26.25379 2.147623  69.71302          5.7 23922.82
## 3 0.2288719 26.26904 2.345592  69.40907          4.5 24108.62
## 4 0.2426236 26.34064 2.557496  69.03839          4.0 24441.60
## 5 0.2551981 26.36388 2.771569  68.71885          4.0 24673.18
## 6 0.2730275 26.41459 2.978441  68.37359          5.7 24912.72
summary(us48cancer0317$totcount)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    2370    9755   24241   33637   38868  176983
summary(us48cancer0317$unemployment)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.600   4.500   5.400   5.921   7.000  13.700
a1 <- sum(us48cancer0317$totcount)
a2 <- sum(us48cancer0317$totpop)
rr <- a1/a2
us48cancer0317$exptot <- rr * us48cancer0317$totpop
summary(us48cancer0317$exptot)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    2658   10061   23959   33637   38976  208034

us48cancer0317$sids <- rep(1:48, each=15)
mus48cancer0317 <- us48cancer0317
colnames(mus48cancer0317)
##  [1] "fips"         "state"        "Year"         "totcount"     "totpop"      
##  [6] "totrate"      "malescount"   "malespop"     "malesrate"    "femalescount"
## [11] "femalespop"   "femalesrate"  "AIAN.HL"      "AIAN.NHL"     "API.HL"      
## [16] "API.NHL"      "BAA.HL"       "BAA.NHL"      "White.HL"     "White.NHL"   
## [21] "unemployment" "exptot"       "sids"
for (i in 13:21) {
    mus48cancer0317[, i] <-  (mus48cancer0317[, i]- mean(mus48cancer0317[, i]))/sd(mus48cancer0317[, i])
}
head( mus48cancer0317)
##   fips state Year totcount  totpop totrate malescount malespop malesrate
## 1    1    AL 2003    21472 4503491   476.8      11228  2179422     515.2
## 2    1    AL 2004    22951 4530729   506.6      12024  2192872     548.3
## 3    1    AL 2005    23342 4565917   511.2      12172  2211403     550.4
## 4    1    AL 2006    24113 4628981   520.9      12798  2243501     570.4
## 5    1    AL 2007    25086 4672840   536.8      13236  2265565     584.2
## 6    1    AL 2008    26093 4718206   553.0      13708  2287949     599.1
##   femalescount femalespop femalesrate    AIAN.HL   AIAN.NHL     API.HL
## 1        10244    2324069       440.8 -0.8951115 -0.3829786 -0.6807173
## 2        10927    2337857       467.4 -0.8663559 -0.3807052 -0.6205997
## 3        11170    2354514       474.4 -0.8367739 -0.3786847 -0.5731817
## 4        11315    2385480       474.3 -0.8056172 -0.3762056 -0.5147688
## 5        11850    2407275       492.3 -0.7766837 -0.3735007 -0.4584002
## 6        12385    2430257       509.6 -0.7385912 -0.3712892 -0.4154168
##      API.NHL     BAA.HL  BAA.NHL   White.HL  White.NHL unemployment   exptot
## 1 -0.8989287 -0.6490985 1.603981 -0.7959856 -0.2662471   0.03851875 23779.00
## 2 -0.8764698 -0.6312760 1.607064 -0.7776644 -0.2875463  -0.10821935 23922.82
## 3 -0.8563441 -0.6065917 1.608667 -0.7565908 -0.3093866  -0.69517173 24108.62
## 4 -0.8384781 -0.5834842 1.616187 -0.7340337 -0.3360211  -0.93973522 24441.60
## 5 -0.8218118 -0.5623547 1.618628 -0.7112457 -0.3589813  -0.93973522 24673.18
## 6 -0.8052010 -0.5323952 1.623955 -0.6892243 -0.3837895  -0.10821935 24912.72
##   sids
## 1    1
## 2    1
## 3    1
## 4    1
## 5    1
## 6    1
yt <- 2003:2017
mus48cancer0317$tyear <- (mus48cancer0317$Year - mean(yt))/sd(yt)
us48cancer0317$tyear <- (mus48cancer0317$Year - mean(yt))/sd(yt)
f0 <- totcount ~ offset(log(exptot)) + tyear +  unemployment
f22 <- update(f0, . ~ . + AIAN.HL   + API.HL  +  BAA.HL)
if (longrun) {
 burn.in <- 5000
 N <- 205000
 thin <- 20
 m422  <- Bcartime(formula  = f22, data =mus48cancer0317,  W = W, family ="poisson",
                 model="anova",  package="CARBayesST", interaction=T,
                 scol="sids", tcol="Year", N=N,
                 burn.in = burn.in, thin=thin, verbose=FALSE)
summary(m422)
table11.2 <- m422$params[, 1:3]
round(table11.2, 3)
dput(table11.2, file=paste0(filepath, "table11.2.txt"))
save(m422, file="uscancer/m422.RData")
} else {
  table11.2 <- dget(file=paste0(filepath, "table11.2.txt"))
}

table11.2 
##               Median    2.5%   97.5%
## (Intercept)   0.0167  0.0162  0.0172
## tyear         0.0404  0.0335  0.0507
## unemployment  0.0082  0.0014  0.0191
## AIAN.HL      -0.0643 -0.0754 -0.0558
## API.HL       -0.0327 -0.0414 -0.0221
## BAA.HL        0.0267  0.0156  0.0448
## tau2.S        0.0418  0.0291  0.0637
## tau2.T        0.1135  0.0640  0.2324
## tau2.I        0.0092  0.0082  0.0103
## rho.S         0.8998  0.6787  0.9901
## rho.T         0.5078  0.0620  0.9131
# Inference with m422 instead
# load(file="uscancer/m422.RData")
modfit <- m422$fit
names(modfit)
##  [1] "summary.results"     "samples"             "fitted.values"      
##  [4] "residuals"           "modelfit"            "accept"             
##  [7] "localised.structure" "formula"             "model"              
## [10] "X"
u <- modfit$fitted.values
length(u)
## [1] 720
mus48cancer0317$fits <- modfit$fitted.values
mus48cancer0317$smrfit <- mus48cancer0317$fits/mus48cancer0317$exptot
#mus48cancer0317$obs_smr <- mus48cancer0317$totcount/mus48cancer0317$exptot




head(mus48cancer0317)
##   fips state Year totcount  totpop totrate malescount malespop malesrate
## 1    1    AL 2003    21472 4503491   476.8      11228  2179422     515.2
## 2    1    AL 2004    22951 4530729   506.6      12024  2192872     548.3
## 3    1    AL 2005    23342 4565917   511.2      12172  2211403     550.4
## 4    1    AL 2006    24113 4628981   520.9      12798  2243501     570.4
## 5    1    AL 2007    25086 4672840   536.8      13236  2265565     584.2
## 6    1    AL 2008    26093 4718206   553.0      13708  2287949     599.1
##   femalescount femalespop femalesrate    AIAN.HL   AIAN.NHL     API.HL
## 1        10244    2324069       440.8 -0.8951115 -0.3829786 -0.6807173
## 2        10927    2337857       467.4 -0.8663559 -0.3807052 -0.6205997
## 3        11170    2354514       474.4 -0.8367739 -0.3786847 -0.5731817
## 4        11315    2385480       474.3 -0.8056172 -0.3762056 -0.5147688
## 5        11850    2407275       492.3 -0.7766837 -0.3735007 -0.4584002
## 6        12385    2430257       509.6 -0.7385912 -0.3712892 -0.4154168
##      API.NHL     BAA.HL  BAA.NHL   White.HL  White.NHL unemployment   exptot
## 1 -0.8989287 -0.6490985 1.603981 -0.7959856 -0.2662471   0.03851875 23779.00
## 2 -0.8764698 -0.6312760 1.607064 -0.7776644 -0.2875463  -0.10821935 23922.82
## 3 -0.8563441 -0.6065917 1.608667 -0.7565908 -0.3093866  -0.69517173 24108.62
## 4 -0.8384781 -0.5834842 1.616187 -0.7340337 -0.3360211  -0.93973522 24441.60
## 5 -0.8218118 -0.5623547 1.618628 -0.7112457 -0.3589813  -0.93973522 24673.18
## 6 -0.8052010 -0.5323952 1.623955 -0.6892243 -0.3837895  -0.10821935 24912.72
##   sids      tyear     fits    smrfit
## 1    1 -1.5652476 21485.16 0.9035351
## 2    1 -1.3416408 22959.94 0.9597506
## 3    1 -1.1180340 23350.05 0.9685354
## 4    1 -0.8944272 24120.83 0.9868760
## 5    1 -0.6708204 25090.72 1.0169226
## 6    1 -0.4472136 26095.15 1.0474628
b <- c(-Inf, 0.8, 1.0, 1.2, Inf)
labss <- c("<0.8", "0.8-1", "1-1.2", ">1.2")
mus48cancer0317$catsmrfit <- factor(cut(mus48cancer0317$smrfit, breaks=b,  labels=labss))
table(mus48cancer0317$catsmrfit)
## 
##  <0.8 0.8-1 1-1.2  >1.2 
##    30   237   400    53
levels(mus48cancer0317$catsmrfit)
## [1] "<0.8"  "0.8-1" "1-1.2" ">1.2"
com <- c("green4", "green2", "yellow", "red2")
colnames(mus48cancer0317)
##  [1] "fips"         "state"        "Year"         "totcount"     "totpop"      
##  [6] "totrate"      "malescount"   "malespop"     "malesrate"    "femalescount"
## [11] "femalespop"   "femalesrate"  "AIAN.HL"      "AIAN.NHL"     "API.HL"      
## [16] "API.NHL"      "BAA.HL"       "BAA.NHL"      "White.HL"     "White.NHL"   
## [21] "unemployment" "exptot"       "sids"         "tyear"        "fits"        
## [26] "smrfit"       "catsmrfit"


colnames(mus48cancer0317)
##  [1] "fips"         "state"        "Year"         "totcount"     "totpop"      
##  [6] "totrate"      "malescount"   "malespop"     "malesrate"    "femalescount"
## [11] "femalespop"   "femalesrate"  "AIAN.HL"      "AIAN.NHL"     "API.HL"      
## [16] "API.NHL"      "BAA.HL"       "BAA.NHL"      "White.HL"     "White.NHL"   
## [21] "unemployment" "exptot"       "sids"         "tyear"        "fits"        
## [26] "smrfit"       "catsmrfit"
i <- 2003
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrfit")]
head(dp)
##    fips state catsmrfit
## 1     1    AL     0.8-1
## 16   10    DE     1-1.2
## 31   12    FL     1-1.2
## 46   13    GA     0.8-1
## 61   16    ID     0.8-1
## 76   17    IL     0.8-1
smr2003 <- plot_usmap(data = dp, values = "catsmrfit", color = "red", exclude=c("AK", "HI")) +
  # scale_fill_gradientn(colours=com,na.value="black",limits=mr, name = "smr") +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  # theme(legend.position = "right")  +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2003


i <- 2003
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrfit")]
head(dp)
##    fips state catsmrfit
## 1     1    AL     0.8-1
## 16   10    DE     1-1.2
## 31   12    FL     1-1.2
## 46   13    GA     0.8-1
## 61   16    ID     0.8-1
## 76   17    IL     0.8-1
smr2003 <- plot_usmap(data = dp, values = "catsmrfit", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  #  scale_fill_gradientn(colours=com,na.value="black",limits=mr, name = "smr") +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2003


i <- 2004
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrfit")]
#head(dp)
smr2004 <- plot_usmap(data = dp, values = "catsmrfit", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2004



i <- 2005
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrfit")]
#head(dp)
smr2005 <- plot_usmap(data = dp, values = "catsmrfit", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2005


i <- 2006
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrfit")]
#head(dp)
smr2006 <- plot_usmap(data = dp, values = "catsmrfit", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2006



i <- 2007
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrfit")]
#head(dp)
smr2007 <- plot_usmap(data = dp, values = "catsmrfit", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2007




i <- 2008
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrfit")]
#head(dp)
smr2008 <- plot_usmap(data = dp, values = "catsmrfit", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2008



i <- 2009
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrfit")]
#head(dp)
smr2009 <- plot_usmap(data = dp, values = "catsmrfit", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2009


i <- 2010
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrfit")]
#head(dp)
smr2010 <- plot_usmap(data = dp, values = "catsmrfit", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2010


i <- 2011
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrfit")]
#head(dp)
smr2011 <- plot_usmap(data = dp, values = "catsmrfit", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2011


i <- 2012
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrfit")]
#head(dp)
smr2012 <- plot_usmap(data = dp, values = "catsmrfit", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2012


i <- 2013
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrfit")]
#head(dp)
smr2013 <- plot_usmap(data = dp, values = "catsmrfit", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2013



i <- 2014
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrfit")]
#head(dp)
smr2014 <- plot_usmap(data = dp, values = "catsmrfit", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2014



i <- 2015
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrfit")]
#head(dp)
smr2015 <- plot_usmap(data = dp, values = "catsmrfit", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2015



i <- 2016
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrfit")]
#head(dp)
smr2016 <- plot_usmap(data = dp, values = "catsmrfit", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2016



i <- 2017
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrfit")]
#head(dp)
smr2017 <- plot_usmap(data = dp, values = "catsmrfit", color = "red", exclude=c("AK", "HI")) +
  scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
  theme(legend.position = "right")  +
  # theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(title= i)
smr2017

library(ggpubr)
# a <- get_legend(smr2003, position = "bottom")
a <- get_legend(smr2017, position = c(0.25, 0.1))
ggarrange(
  smr2003, smr2004, smr2005, smr2006, smr2007,
  smr2008, smr2009, smr2010, smr2011, smr2012,
  smr2013, smr2014, smr2015, smr2016, smr2017, as_ggplot(a),
  common.legend = TRUE, legend = "none", nrow = 4, ncol = 4
)


ggsave(filename=paste0(figurepath, "uscancerfits.png"), device = "png")
## Saving 7 x 5 in image

2 Not reported models


head(us48cancertot)
us48cancertot$totcount <- round(us48cancertot$totcount)
a1 <- sum(us48cancertot$totcount)
a2 <- sum(us48cancertot$totpop)
rr <- a1/a2
us48cancertot$exptot <- rr * us48cancertot$totpop
summary(us48cancertot$exptot)
colnames(us48cancertot)

us48cancertot$logexptot <- log(us48cancertot$exptot)

burn.in <- 5000
N <- 25000
thin <- 10

family <- "poisson"
scol <- "sids"
tcol <- "Year"
link <- "log"
us48cancertot$sids <- 1:48


f2 <- totcount ~  offset(log(exptot)) +  BAA.HL +  BAA.NHL   + White.HL + White.NHL

m0  <- Bcartime(formula  = f2, data =us48cancertot,  family ="poisson",
                 N=N, burn.in = burn.in, thin=thin)
summary(m0)

# for INLA
f2 <- totcount ~  BAA.HL +  BAA.NHL   + White.HL + White.NHL
model <- c("bym")
colnames(us48cancertot)
d1 <- Bcartime(data=us48cancertot, formula=f2, W=W, scol =scol,
               offsetcol="logexptot",  model=model,  link=link, family=family, package="inla")
summary(d1)
rownames(d1$fit$summary.hyperpar)



## Analysis of the cancer totals spatio-temporal
us48cancer0317$sids <- rep(1:48, each=15) ## Needs a proper scol argument
scol <- "sids"

colnames(us48cancer0317)
unique(us48cancer0317$fips)

mus48cancer0317 <- us48cancer0317
colnames(mus48cancer0317)
for (i in 13:21) {
    mus48cancer0317[, i] <-  (mus48cancer0317[, i]- mean(mus48cancer0317[, i]))/sd(mus48cancer0317[, i])
}
head( mus48cancer0317)
yt <- 2003:2017
mus48cancer0317$tyear <- (mus48cancer0317$Year - mean(yt))/sd(yt)
us48cancer0317$tyear <- (mus48cancer0317$Year - mean(yt))/sd(yt)
f1 <- totcount ~  offset(log(exptot)) + tyear + AIAN.NHL  + API.NHL  +  BAA.NHL + White.NHL+ unemployment

m01  <- Bcartime(formula  = f1, data =mus48cancer0317, family ="poisson",
                 N=N, burn.in = burn.in, thin=thin)
summary(m01)

f2 <- totcount ~  offset(log(exptot)) + tyear+ AIAN.HL  + API.HL  +  BAA.HL + White.HL+ unemployment

m02  <- Bcartime(formula  = f2, data =mus48cancer0317, family ="poisson",
                 N=N, burn.in = burn.in, thin=thin)
summary(m02)
round(m01$mchoice, 2)
round(m02$mchoice, 2)

# f2 <- totcount ~  offset(log(exptot)) +  BAA.HL +  BAA.NHL   + White.HL + White.NHL+ unemployment


m01  <- Bcartime(formula  = f2, data =mus48cancer0317,  W = W, family = family,
                link= link, N=N, burn.in = burn.in, thin=thin)
summary(m01)

m2  <- Bcartime(formula  = f2, data =mus48cancer0317,  W = W, family = family,
      model="linear",  package="CARBayesST", link= link, scol=scol, tcol=tcol, N=N,
      burn.in = burn.in, thin=thin)
summary(m2)


m3  <- Bcartime(formula  = f2, data =mus48cancer0317,  W = W, family = family,
                model="sepspatial",  package="CARBayesST",
                link= link, scol=scol, tcol=tcol, N=N,
                burn.in = burn.in, thin=thin)
summary(m3)

m4  <- Bcartime(formula  = f2, data =mus48cancer0317,  W = W, family ="poisson",
                model="anova",  package="CARBayesST", interaction=T,
                 scol=scol, tcol=tcol, N=N,
                burn.in = burn.in, thin=thin)
summary(m4)

m5 <- Bcartime(formula  = f2, data =mus48cancer0317,  W = W, family = family,
              model="ar",  package="CARBayesST",
              link= link, scol=scol, tcol=tcol, N=N,
              burn.in = burn.in, thin=thin)
summary(m5)

m51 <- Bcartime(formula  = f1, data =mus48cancer0317,  W = W, family = family,
               model="ar",  package="CARBayesST",
               link= link, scol=scol, tcol=tcol, N=N,
               burn.in = burn.in, thin=thin)
summary(m51)

f3 <- totcount ~  offset(log(exptot)) + tyear+  AIAN.HL  + API.HL  +  BAA.HL + BAA.NHL + White.NHL + White.HL+ unemployment
m53 <- Bcartime(formula  = f3, data =mus48cancer0317,  W = W, family = "poisson",
                model="ar",  package="CARBayesST",
                scol=scol, tcol=tcol, N=N,
                burn.in = burn.in, thin=thin)
summary(m53)


v <- us48cancer0317[, 13:20]
head(v)
a <- apply(v, 1, sum)
library(GGally)
ggpairs(v)

round(cor(v), 2)

v1 <- v[, c(2, 4, 6, 8)]
head(v1)
round(cor(v1), 2)

v2 <- v[, c(1, 3, 5, 7)]
head(v2)
round(cor(v2), 2)


u <- v[, c(1, 3, 5)]
cor(u)

## INLA did not work

mus48cancer0317$logexptot <- log(mus48cancer0317$exptot)

f2 <- totcount ~    BAA.HL +  BAA.NHL   + White.HL + White.NHL
model <- c("iid", "ar1")
# model <- c("bym", "ar1")

d1 <- Bcartime(data=mus48cancer0317, formula=f2, W=W, scol =scol, tcol=tcol,
               offsetcol="logexptot",  model=model,  link=link, family=family, package="inla")
summary(d1)
rownames(d1$fit$summary.hyperpar)


## Try the Anova model only

f0 <- totcount ~ offset(log(exptot)) + tyear +  unemployment
f1 <- update(f0, . ~ . + AIAN.NHL  + API.NHL +  BAA.NHL + White.NHL)
f2 <- update(f0, . ~ . + AIAN.HL   + API.HL  +  BAA.HL  + White.HL)
f3 <- update(f0, . ~ . + BAA.HL + BAA.NHL + White.NHL + White.HL)
f22 <- update(f0, . ~ . + AIAN.HL   + API.HL  +  BAA.HL)

m40  <- Bcartime(formula  = f0, data =mus48cancer0317,  W = W, family ="poisson",
                model="anova",  package="CARBayesST", interaction=T,
                scol=scol, tcol=tcol, N=N,
                burn.in = burn.in, thin=thin)
summary(m40)

m41  <- Bcartime(formula  = f1, data =mus48cancer0317,  W = W, family ="poisson",
                 model="anova",  package="CARBayesST", interaction=T,
                 scol=scol, tcol=tcol, N=N,
                 burn.in = burn.in, thin=thin)
summary(m41)

m42  <- Bcartime(formula  = f2, data =mus48cancer0317,  W = W, family ="poisson",
                 model="anova",  package="CARBayesST", interaction=T,
                 scol=scol, tcol=tcol, N=N,
                 burn.in = burn.in, thin=thin)
summary(m42)
m422  <- Bcartime(formula  = f22, data =mus48cancer0317,  W = W, family ="poisson",
                 model="anova",  package="CARBayesST", interaction=T,
                 scol=scol, tcol=tcol, N=N,
                 burn.in = burn.in, thin=thin)
summary(m422)

m43  <- Bcartime(formula  = f3, data =mus48cancer0317,  W = W, family ="poisson",
                 model="anova",  package="CARBayesST", interaction=T,
                 scol=scol, tcol=tcol, N=N,
                 burn.in = burn.in, thin=thin)
summary(m43)
m40$mchoice
m41$mchoice
m42$mchoice
m43$mchoice

m42$mchoice
m422$mchoice

f4 <- totcount ~ offset(log(exptot)) +  unemployment + AIAN.HL   + API.HL  +  BAA.HL  + White.HL
m44  <- Bcartime(formula  = f4, data =mus48cancer0317,  W = W, family ="poisson",
                 model="anova",  package="CARBayesST", interaction=T,
                 scol=scol, tcol=tcol, N=N,
                 burn.in = burn.in, thin=thin)
summary(m44)

# m422 is the chosen model
## Try INLA
f22

u <- m422$params[, 1:3]
u
library(xtable)
xtable(u, digits=3)

f22inla <- totcount ~ tyear + unemployment + AIAN.HL + API.HL + BAA.HL

model <- c("bym", "ar1")

colnames(mus48cancer0317)
mus48cancer0317$logexptot <- log(mus48cancer0317$exptot)
d22 <- Bcartime(data=mus48cancer0317, formula=f22inla, W=W, scol =scol, tcol=tcol,
               offsetcol="logexptot",  model=model,  link="log", family="poisson", package="inla")
summary(d22)
rownames(d22$fit$summary.hyperpar)
## Bursted parameter estimates

# All done 
end.time <- proc.time()[3]
comp.time<- (end.time-start.time)/60
# comp.time<-fancy.time(comp.time)
print(comp.time)
##   elapsed 
## 0.3530667