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Chapter 1

Introduction to Statistics

1.1 Lecture 1: What is statistics?

1.1.1 Early and modern definitions

• The word statistics has its roots in the Latin word status which means the state, and in the
middle of the 18th century was intended to mean:

collection, processing and use of data by the state.

• With the rapid industrialization of Europe in the first half of the 19th century, statistics
became established as a discipline. This led to the formation of the Royal Statistical Society,
the premier professional association of statisticians in the UK and also world-wide, in 1834.

• During this 19th century growth period, statistics acquired a new meaning as the interpre-
tation of data or methods of extracting information from data for decision making. Thus
statistics has its modern meaning as the methods for:

collection, analysis and interpretation of data.

• Indeed, the Oxford English Dictionary defines statistics as: “The practice or science of col-
lecting and analysing numerical data in large quantities, especially for the purpose of inferring
proportions in a whole from those in a representative sample.”

• Note that the word ‘state’ has gone from its definition. Instead, statistical methods are now
essential for everyone wanting to answer questions using data.

For example, will it rain tomorrow? Does eating red meat make us live longer? Is smoking
harmful during pregnancy? Is the new shampoo better than the old? Will the UK economy get
better after Brexit? At a more personal level: What degree classification will I get at graduation?
How long will I live for? What prospects do I have in the career I have chosen? How do I invest
my money to maximise the return? Will the stock market crash tomorrow?

9
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1.1.2 Uncertainty: the main obstacle to decision making

The main obstacle to answering the types of questions above is uncertainty, which means lack of
one-to-one correspondence between cause and effect. For example, having a diet of (well-
cooked) red meat for a period of time is not going to kill me immediately. The effect of smoking
during pregnancy is difficult to judge because of the presence of other factors, e.g. diet and lifestyle;
such effects will not be known for a long time, e.g. at least until the birth. Thus it seems:

Uncertainty is the only certainty!

1.1.3 Statistics tames uncertainty

• It is clear that we may never be able to get to the bottom of every case to learn the full truth
and so will have to make a decision under uncertainty; thus mistakes cannot be avoided!

• If mistakes cannot be avoided, it is better to know how often we make mistakes (which
provides knowledge of the amount of uncertainty) by following a particular rule of decision
making.

• Such knowledge could be put to use in finding a rule of decision making which does not betray
us too often, or which minimises the frequency of wrong decisions, or which minimises the
loss due to wrong decisions.

Thus we have the equation:

Uncertain
knowledge

+
Knowledge of the extent of
uncertainty in it

=
Usable
knowledge

Researchers often make guesses about scientific quantities. For example, try to guess my age: 65
or 45? These predictions are meaningless without the associated uncertainties. Instead, appropriate
data collection and correct application of statistical methods may enable us to make statements
like: I am 97% certain that the correct age is between 47 and 54 years. Remember, “to guess is
cheap, to guess incorrectly is expensive” – old Chinese proverb.

1.1.4 Why should I study statistics as part of my degree?

• Studying statistics will equip you with the basic skills in data analysis and doing science with
data.

• A decent level of statistical knowledge is required no matter what branch of mathematics,
engineering, science and social science you will be studying.

• Learning statistical theories gives you the opportunity to practice your deductive mathemat-
ical skills on real life problems. In this way, you will improve at mathematical methods while
studying statistical methods.

“All knowledge is, in final analysis, history.
All sciences are, in the abstract, mathematics.

All judgements are, in their rationale, statistics.”

Prof. C. R. Rao
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1.1.5 Lie, Damn Lie and Statistics?

Sometimes people say, “you can prove anything in statistics!” and many such jokes. Such remarks
bear testimony to the fact that often statistics and statistical methods are miss-quoted without
proper verification and robust justification. This is even more important in this year of the global
pandemic as everyday we are showered with a deluge of numbers. The front and the back cover
of this booklet plot two pandemic related diagrams that we plan to discuss as we learn different
topics in this module.

Returning to the criticisms of statistics, admittedly and regretfully, statistics can be very much
miss-used and miss-interpreted. However, we statisticians argue:

• Every number is guilty unless proved innocent.

• Figures won’t lie, but liars can figure!

Hence, although people may miss-use the tools of statistics, it is our duty to learn and sharpen the
those to develop scientifically robust and strong arguments.

As discussed before statistical methods are only viable tool whenever there is uncertainty in
decision making. In scientific investigations, statistics is an inevitable instrument in search of truth
when uncertainty cannot be totally removed from decision making. Off-course, a statistical method
may not yield the best predictions in a very particular situation, but a systematic and robust
application of statistical methods will eventually win over pure guesses. For example, statistical
methods prove that cigarette smoking is bad for human health.

1.1.6 What’s in this module?

• Chapter 1: We will start with the basic statistics used in everyday life, e.g. mean, median,
mode, standard deviation, etc. Statistical analysis and report writing will be discussed. We
will also learn how to explore data using graphical methods.

– For this we will use the R statistical package. R is freely available to download. Search
download R or go to: https://cran.r-project.org/. We will use it as a calculator
and also as a graphics package to explore data, perform statistical analysis, illustrate
theorems and calculate probabilities. You do not need to learn any program-
ming language. You will be instructed to learn basic commands like: 2+2; mean(x);

plot(x,y).

– In this module we will demonstrate using the R package. A nicer experience is provided
by the commercial, but still freely available, R Studio software. It is recommended that
you use that.

• Chapter 2: Introduction to Probability. We will define and interpret probability as a
measure of uncertainty. We will learn the rules of probability and then explore fun examples
of probability, e.g. the probability of winning the National Lottery.

• Chapter 3: Random variables. We will learn that the results of different random exper-
iments lead to different random variables following distributions such as the binomial, and
normal. etc. We will learn their basic properties, e.g. mean and variance.
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• Chapter 4: Statistical Inference. We will discuss basic ideas of statistical inference,
including techniques of point and interval estimation and hypothesis testing.

1.1.7 Take home points:

• We apply statistical methods whenever there is uncertainty and complete enumeration is not
possible.

• This module will provide a very gentle introduction to statistics and probability together with
the software package R for data analysis.

• Statistical knowledge is essential for any scientific career in academia, industry and govern-
ment.

• Read the New York Times article For Today’s Graduate, Just One Word: Statistics
(search on Google).

• Watch the YouTube video Joy of Statistics before attending the next lecture.

1.2 Lecture 2: Basic statistics

1.2.1 Lecture mission

In Lecture 1 we got a glimpse of the nature of uncertainty and statistics. In this lecture we get our
hands dirty with data and learn a bit more about it.

How do I obtain data? How do I summarise it? Which is the best measure among mean, median
and mode? What do I make of the spread of the data?

1.2.2 How do I obtain data?

How should we collect data in the first place? Unless we can ask everyone in the population we
should select individuals randomly (haphazardly) in order to get a representative sample. Other-
wise we may introduce bias. For example, in order to gauge student opinion in this class I should
not only survey the international students. But there are cases when systematic sampling may
be preferable. For example, selecting every third caller in a radio phone-in show for a prize, or
sampling air pollution hourly or daily. There is a whole branch of statistics called survey methods
or sample surveys, where these issues are studied.

As well as randomness, we need to pay attention to the design of the study. In a designed
experiment the investigator controls the values of certain experimental variables and then measures
a corresponding output or response variable. In designed surveys an investigator collects data on a
randomly selected sample of a well-defined population. Designed studies can often be more effective
at providing reliable conclusions, but are frequently not possible because of difficulties in the study.
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We will return to the topics of survey methods and designed surveys later in Lecture 28. Until
then we assume that we have data from n randomly selected sampling units, which we will conve-
niently denote by x1, x2, . . . , xn. We will assume that these values are numeric, either discrete like
counts, e.g. number of road accidents, or continuous, e.g. heights of 4-year-olds, marks obtained
in an examination. We will consider the following example:

♥ Example 1 Fast food service time The service times (in seconds) of customers at a fast-food
restaurant. The first row is for customers who were served from 9–10AM and the second row is for
customers who who were served from 2–3PM on the same day.

AM 38 100 64 43 63 59 107 52 86 77

PM 45 62 52 72 81 88 64 75 59 70

How can we explore the data?

1.2.3 Summarising data

• We summarise categorical (not numeric) data by tables. For example: 5 reds, 6 blacks etc.

• For numeric data x1, x2, . . . , xn, we would like to know the centre (measures of location or
central tendency) and the spread or variability.

Measures of location

• We are seeking a representative value for the data x1, x2, . . . , xn which should be a function
of the data. If a is that representative value then how much error is associated with it?

• The total error could be the sum of squares of the deviations from a, SSE =
∑n

i=1(xi − a)2

or the sum of the absolute deviations from a, SSA =
∑n

i=1 |xi − a|.

• What value of a will minimise the SSE or the SSA? For SSE the answer is the sample mean
and for SSA the answer is the sample median.

The sample mean minimises the SSE

• Let us define the sample mean by:

x̄ =
1

n
(x1 + x2 + · · ·+ xn) =

1

n

n∑
i=1

xi.

• How can we prove the above assertion? Use the derivative method. Set ∂
∂a SSE = 0 and solve

for a. Check the second derivative condition that it is positive at the solution for a. Try this
at home.
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• Following is an alternative proof that establishes a very important result in statistics.

∑n
i=1(xi − a)2 =

∑n
i=1(xi − x̄+ x̄− a)2 {Add and subtract x}

=
∑n

i=1

{
(xi − x̄)2 + 2(xi − x̄)(x̄− a) + (x̄− a)2

}
=

∑n
i=1(xi − x̄)2 + 2(x̄− a)

∑n
i=1(xi − x̄) +

∑n
i=1(x̄− a)2

=
∑n

i=1(xi − x̄)2 + n(x̄− a)2,

since
∑n

i=1(xi − x̄) = nx− nx = 0.

– Now note that: the first term is free of a; the second term is non-negative for any value
of a. Hence the minimum occurs when the second term is zero, i.e. when a = x̄.

– This establishes the fact that

the sum of (or mean) squares of the deviations from any number a is
minimised when a is the mean.

– In the proof we also noted that
∑n

i=1(xi − x̄) = 0. This is stated as:

the sum of the deviations of a set of numbers from
their mean is zero.

– In statistics and in this module, you will come across these two facts again and again!

• The above justifies why we often use the mean as a representative value. For the service time
data, the mean time in AM is 68.9 seconds and for PM the mean is 66.8 seconds.

The sample median minimises the SSA

• Here the derivative approach does not work since the derivative does not exist for the absolute
function.

• Instead we use the following argument. First, order the observations:

x(1) ≤ x(2) ≤ · · · ≤ x(n).

For the AM service time data: 38 < 43 < 52 < 59 < 63 < 64 < 77 < 86 < 100 < 107.

• Now note that:

SSA =
n∑
i=1

|xi − a| =
n∑
i=1

|x(i) − a| = |x(1) − a|+ |x(n) − a|+ |x(2) − a|+ |x(n−1) − a|+ · · ·

• Easy to argue that |x(1) − a|+ |x(n) − a| is minimised when a is such that x(1) ≤ a ≤ x(n).

• Easy to argue that |x(2)−a|+ |x(n−1)−a| is minimised when a is such that x(2) ≤ a ≤ x(n−1).

• Finally, when n is odd, the last term |x(n+1
2

)− a| is minimised when a = x(n+1
2

) or the middle

value in the ordered list.
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• If however, n is even, the last pair of terms will be |x(n
2

) − a| + |x(n
2

+1) − a|. This will be
minimised when a is any value between x(n

2
) and x(n

2
+1). For convenience, we often take the

mean of these as the middle value.

• Hence the middle value, popularly known as the median, minimises the SSA. Hence the
median is also often used as a representative value or a measure of central tendency. This
establishes the fact that:

the sum of (or mean) of the absolute deviations from any number a is
minimised when a is the median.

• To recap: the median is defined as the observation ranked 1
2(n+1) in the ordered list if n is odd.

If n is even, the median is any value between n
2 th and (n2 +1)th in the ordered list. For example,

for the AM service times, n = 10 and 38 < 43 < 52 < 59 < 63 < 64 < 77 < 86 < 100 < 107.
So the median is any value between 63 and 64. For convenience, we often take the mean of
these. So the median is 63.5 seconds. Note that we use the unit of the observations when
reporting any measure of location.

The sample mode minimises the average of a 0-1 error function.
The mode or the most frequent (or the most likely) value in the data is taken as the most represen-
tative value if we consider a 0-1 error function instead of the SSA or SSE above. Here, one assumes
that the error is 0 if our guess a is the correct answer and 1 if it is not. It can then be proved that
(proof not required) the best guess a will be the mode of the data.

Which of the three (mean, median and mode) would you prefer?
The mean gets more affected by extreme observations while the median does not. For example for
the AM service times, suppose the next observation is 190. The median will be 64 instead of 63.5
but the mean will shoot up to 79.9.

Measures of spread

• A quick measure of the spread is the range, which is defined as the difference between the
maximum and minimum observations. For the AM service times the range is 69 (107 − 38)
seconds.

• Standard deviation: square root of variance = 1
n−1

∑n
i=1(xi − x̄)2.

n∑
i=1

(xi − x̄)2 =

n∑
i=1

(
x2
i − 2xix̄+ x̄2

)
=

n∑
i=1

x2
i − 2x̄(nx̄) + nx̄2 =

n∑
i=1

x2
i − nx̄2.

Hence we calculate variance by the formula:

Var(x) = s2 =
1

n− 1

(
n∑
i=1

x2
i − nx̄2

)
.

• Sometimes the variance is defined with the divisor n instead of n− 1. We have chosen n− 1
since this is the default in R. We will return to this in Chapter 4.
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• The standard deviation (sd)for the AM service times is 23.2 seconds. Note that it has the
same unit as the observations.

• The interquartile range (IQR) is the difference between the third, Q3 and first, Q1 quartiles,
which are respectively the observations ranked 1

4(3n + 1) and 1
4(n + 3) in the ordered list.

Note that the median is the second quartile, Q2. When n is even, definitions of Q3 and Q1

are similar to that of the median, Q2. The IQR for the AM service times is 83.75−53.75 = 30
seconds.

1.2.4 Take home points

• As a measure of location we have three choices: mean, median and mode, each of which is
optimal under a different consideration.

• We have discussed three measures of spread: range, sd and the IQR.

• Additional examples and mathematical details are provided in Section A.1.

1.3 Lecture 3: Data visualisation with R

1.3.1 Lecture mission

How do I graphically explore the data? (See two data sets below). Which of the data points are
outliers? Hence, we have two urgent needs:

1. Need a computer-based calculator to calculate the summary statistics!

2. Need to use a computer software package to visualise our data!

Our mission in this lecture is to get started with R. We will learn the basic R commands (mean,
var, summary, table, barplot, hist, pie and boxplot) to explore data sets.

♥ Example 2 Computer failures

Weekly failures of a university computer system over a period of two years: 4, 0, 0, 0, . . . , 4, 2, 13.

4 0 0 0 3 2 0 0 6 7
6 2 1 11 6 1 2 1 1 2
0 2 2 1 0 12 8 4 5 0

and so on.

♥ Example 3 Weight gain of students

Is it true that students tend to gain weight during their first year in college? Cornell Professor
of Nutrition, David Levitsky, recruited students from two large sections of an introductory health
course. Although they were volunteers, they appeared to match the rest of the freshman class in
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terms of demographic variables such as sex and ethnicity. 68 students were weighed during the first
week of the semester, then again 12 weeks later.

student number initial weight (kg) final weight (kg)

1 77.56423 76.20346
2 49.89512 50.34871
...

...
...

67 75.74986 77.11064
68 59.42055 59.42055

♥ Example 4 billionaires

Fortune magazine publishes a list of the world’s billionaires each year. The 1992 list includes
225 individuals. Their wealth, age, and geographic location (Asia, Europe, Middle East, United
States, and Other) are reported. Variables are: wealth: Wealth of family or individual in billions of
dollars; age: Age in years (for families it is the maximum age of family members); region: Region
of the World (Asia, Europe, Middle East, United States and Other). The head and tail values of
the data set are given below.

wealth age region

37.0 50 M
24.0 88 U

...
...

...
1 9 M
1 59 E

1.3.2 Get into R

• It is very strongly recommended that you download and install R (and Rstudio optionally)
on your own computer.

• On a university workstation go to: All Programs → Statistics → Rstudio

• Or you may use the basic R package, : All Programs → Statistics → R

• In both Rstudio and R there is the R console that allows you to type in commands at the
prompt > directly.

• For example, type 2+2 at the prompt and hit enter.

• R functions are typically of the form function(arguments)

• Example: mean(c(38, 100, 64, 43, 63, 59, 107, 52, 86, 77)) and hitting the Enter
button computes the mean of the numbers entered.

• The letter c() is also a command that concatenates (collects) the input numbers into a vector

• Use help(mean) or simply ?mean for more information.
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• Even when an R function has no arguments we still need to use the brackets, such as in ls()

which gives a list of objects in the current workspace.

• The assignment operator is <- or =.

• Example: x <- 2+2 means that x is assigned the value of the expression 2+2.

• Comments are inserted after a # sign. For example, # I love R.

1.3.3 Working directory in R

The most important, and the most difficult for beginners, task is to set the working directory in R.
The working directory is the sub-folder in your computer where you would like to save your data
and R programme files. There are essentially two steps that you will have to follow: (i) create a
dedicated folder in your computer for Math1024 and (ii) let R know of the folder location. Please
follow the steps below carefully.

• If you are working in your computer, please create a folder and name it C:/math1024. R is
case sensitive, so if you name it Math1024 instead of math1024 then that’s what you need to
use. Avoid folder names with spaces, e.g. do not use: Math 1024.

• In the university workstations there is a drive called H: which is permanent (will be there for
you to use throughout your 3 (or 4) year degree programme. From Windows File Explorer
navigate to H: and create a sub-folder math1024.

• Please download the data.zip from the webpage:
http://www.personal.soton.ac.uk/sks/teach/math1024/data.zip.

• Please unzip (extract) the file and save the data files in the math1024 folder you created. You
do not need to download this file again unless you are explicitly told to do so.

• In R, issue the command getwd(), which will print out the currect working directory.

• Assuming you are working in the university computers, please set the working directory by
issuing the command: setwd("H:/math1024/"). In your own computer you will modify the
command to something like: setwd("C:/math1024/")

• In Rstudio, a more convenient way to set the working directory is: by following the menu
Session → Set Working Directory. It then gives you a dialogue box to navigate to the
folder you want.

• To confirm that this has been done correctly, re-issue the command getwd() and see the
output.

• Your data reading commands below will not work if you fail to follow the instruc-
tion in this subsection.

• Please remember that you need to issue the setwd("H:/math1024/") every time you log-in.
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1.3.4 Keeping and saving commands in a script file

• To easily modify (edit) previous commands we can use the up (↑) and down (↓) arrow keys.

• However, we almost never type the long R commands at the R prompt > as we are prone to
making mistakes and we may need to modify the commands for improved functionality.

• That is why we prefer to simply write down the commands one after another in a script file
and save those for future use.

– File → New File → R Script (for a new script).

– File → Open File (for an existing script).

• You can either execute the entire script or only parts by highlighting the respective commands
and then clicking the Run button or Ctrl + R to execute.

• Do not forget to save the script file with a suitable name, e.g. myfirst.R in the math1024

sub-folder you created.

• It is very strongly recommended that you write R commands in a script file as instructed in
this subsection.

• All the commands used in this lecture are already typed in the file Rfile1.R that you can
also download from Blackboard.

• Please do not attempt to go into R now. Instead, just read these notes or watch the video. You
will go through the commands at your own pace as instructed in the notes for the laboratory
session as Appendix C of this booklet.

1.3.5 How do I get my data into R?

R allows many different ways to read data.

• To read just a vector of numbers separated by tab or space use scan("filename.txt").

• To read a tab-delimited text file of data with the first row giving the column headers, the
command is: read.table("filename.txt", head=TRUE).

• For comma-separated files (such as the ones exported by EXCEL), the command is

read.table("filename.csv", head=TRUE, sep=",") or simply

read.csv("filename.csv", head=TRUE).

• The option head=TRUE tells that the first row of the data file contains the column headers.

• Read the help files by typing ?scan and ?read.table to learn these commands.

• You are reminded that the following data reading commands will fail if you have not set the
working directory correctly.
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• Assuming that you have set the working directory to where your data files are saved, simply
type and Run

– cfail <- scan("compfail.txt")

– ffood <- read.csv("servicetime.csv", head=T)

– wgain <- read.table("wtgain.txt", head=T)

– bill <- read.table("billionaires.txt", head=T)

• R does not automatically show the data after reading. To see the data you need to issue a
command like: cfail, head(ffood), tail(bill) etc. after reading in the data.

• You must issue the correct command to read the data set correctly.

• For example, what’s wrong with wrongfood <- read.table("servicetime.csv", head=T)?

In the past, reading data into R has been the most difficult task for students. Please ask for
help in the lab sessions if you are still struggling with this. If all else fails, you can read the data
sets from the course web-page as follows:

• path <- "http://www.personal.soton.ac.uk/sks/teach/math1024/"

• cfail <- scan(paste0(path, "compfail.txt"))

• ffood <- read.csv(paste0(path, "servicetime.csv"), head=T)

1.3.6 Working with data in R

• The data read by the read.table and read.csv commands are saved as data frames in R.
These are versatile matrices which can hold numeric as well as character data. You will see
this in the billionaires data set later.

• Just type ffood and hit the Enter button or the Run icon. See what happens.

• A convenient way to see the data is to see either the head or the tail of the data. For example,
type head(ffood) and hit Run or tail(ffood) and hit Run.

• To know the dimension (how many rows and columns) issue dim(ffood).

• To access elements of a data frame we can use square brackets, e.g. ffood[1, 2] gives the
first row second column element, ffood[1, ] gives everything in the first row and ffood[,

1] gives everything in the first column.

• The named columns in a data frame are often accessed by using the $ operator. For example,
ffood$AM prints the column whose header is AM.

• So, what do you think mean(ffood$AM) will give?

• There are many R functions with intuitive names, e.g. mean, median, var, min, max,

sum, prod, summary, seq, rep etc. We will explain them as we need them.
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1.3.7 Summary statistics from R

• Use summary(ffood); summary(cfail); summary(wgain) and summary(bill) to get the
summaries.

• What does the command table(cfail) give?

• To calculate variance, try var(ffood$AM). What does the command var(c(ffood$AM, ffoood$PM)
give?

• Obtain a frequency distribution of region in bill by issuing: table(bill$region).

• Variance and standard deviation (both with divisor n− 1) are obtained by using commands
like var(cfail) and sd(cfail).

1.3.8 Graphical exploration using R

• The commands are stem, hist, plot, barplot, pie and boxplot.

• A stem and leaf diagram is produced by the command stem. Issue the command stem(ffood$AM)
and ?stem to learn more.

• A bar plot is obtained by barplot(table(cfail)). barplot(table(bill$region), col=2:6).

• Histograms are produced by hist(cfail).

• Modify the command so that it looks a bit nicer: hist(cfail, xlab="Number of weekly

computer failures")

• To obtain a scatter plot of the before and after weights of the students, we issue the command
plot(wgain$initial, wgain$final)

• Add a 45o degree line by abline(0, 1, col="red")

• A nicer and more informative plot can be obtained by: plot(wgain$initial, wgain$final,
xlab="Wt in Week 1", ylab="Wt in Week 12", pch="*", las=1)

abline(0, 1, col="red")

title("A scatterplot of the weights in Week 12 against the weights in Week 1")

• You can save the graph in any format you like using the menus.

• To draw boxplots use the boxplot command, e.g., boxplot(cfail).

• The default boxplot shows the median and whiskers drawn to the nearest observation from
the first and third quartiles but not beyond the distance 1.5 times the inter-quartile range.
Points beyond the two whiskers are suspected outliers and are plotted individually.

• boxplot(ffood) generates two boxplots side-by-side: one for the AM service times and the
other for the PM service times. Try boxplot(data=bill, wealth ∼ region, col=2:6)

• Various parameters of the plot are controlled by the par command. To learn about these
type ?par.
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1.3.9 Take home points

This lecture provided an opportunity to get started with R. It is expected that students will install
R (and Rstudio optionally) on their computer. If that is not possible then they should use a
university workstation to go through the basic commands to read and graphically display data. All
the commands in this lecture can be downloaded from the course content section of the blackboard
site for MATH1024 in the folder R commands. The data files are also available from blackboard.
Please make yourself familiar with these data sets. They will be used throughout the module.

Detailed instructions for the three R labs (during weeks 2-4) are included as the last chapter
of this booklet. A challenging exercise in the first R lab session is to draw the butterfly with
different colours and shapes as you see below. Although R programming is not required, drawing
the butterfly is a fun exercise that may help you gain advanced understanding of the R-language.

R is intuitive and easy to learn, and there are a wealth of community resources online. Using
such resources it is possible to draw beautiful publication quality graphics, e.g. see the front and
back cover of this booklet, that you see in scientific literature and mass media.

R is not a spreadsheet programme like EXCEL and it is excellent for advanced statistical methods
where EXCEL will fail. R will be used throughout this module and in all subsequent Statistics
modules in years 2 and 3.

There is a R chetsheet that you can download from Blackboard (under Course Content and R
resources) for more help with getting started.

Figure 1.1: Different shapes using the butterfly programme. Programming helps you to be uniquely
creative!



Chapter 2

Introduction to Probability

Chapter mission

Why should we study probability? What are probabilities? How do you find them? What are the
main laws of probabilities? How about some fun examples where probabilities are used to solve
real-life problems?

2.1 Lecture 4: Definitions of probability

2.1.1 Why should we study probability?

Probabilities are often used to express the uncertainty of events of interest happening. For example,
we may say that: (i) it is highly likely that Liverpool will retain the premiership title this season
or to be more specific, I think there is more than an 80% chance that Liverpool will keep the title;
(ii) the probability of a tossed fair coin landing heads is 0.5. So it is clear that probabilities mean
different things to different people. As we have seen in the previous chapter, there is uncertainty
everywhere. Hence, probabilities are used as tools to quantify the associated uncertainty. The
theory of statistics has its basis in the mathematical theory of probability. A statistician must
be fully aware of what probability means to him/her and what it means to other people. In this
lecture we will learn the basic definitions of probability and how to find them.

2.1.2 Two types of probabilities: subjective and objective

The two examples above, Liverpool and tossing a coin, convey two different interpretations of
probability. The Liverpool probability is the commentator’s own subjective belief, isn’t it? The
commentator certainly has not performed a large experiment involving all the 20 teams over the
whole (future) season under all playing conditions, players, managers and transfers. This notion
is known as subjective probability. Subjective probability gives a measure of the plausibility of
the proposition, to the person making it, in the light of past experience (e.g. Liverpool are the
current champions) and other evidence (e.g. they spent the maximum amount of money buying
players). There are plenty of other examples, e.g. I think there is a 70% chance that the FTSE
100 will rise tomorrow, or according to the Met Office there is a 40% chance that we will have a
white Christmas this year in Southampton. Subjective probabilities are nowadays used cleverly

23
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in a statistical framework called Bayesian inference. Such methods allow one to combine expert
opinion and evidence from data to make the best possible inferences and prediction. Unfortunately
discussion of Bayesian inference methods is beyond the scope of this module, although we will talk
about it when possible.

The second definition of probability comes from the long-term relative frequency of a result of
a random experiment (e.g. coin tossing) which can be repeated an infinite number of times under
essentially similar conditions. First we give some essential definitions.

Random experiments. The experiment is random because in advance we do not know exactly
what outcome the experiment will give, even though we can write down all the possible outcomes
which together are called the sample space (S). For example, in a coin tossing experiment, S

= {head, tail}. If we toss two coins together, S = {HH, HT, TH, TT} where H and T denote
respectively the outcome head and tail from the toss of a single coin.

Event. An event is defined as a particular result of the random experiment. For example, HH
(two heads) is an event when we toss two coins together. Similarly, at least one head e.g. {HH, HT,
TH} is an event as well. Events are denoted by capital letters A,B,C, . . . or A1, B1, A2 etc., and
a single outcome is called an elementary event, e.g. HH. An event which is a group of elementary
events is called a composite event, e.g. at least one head. How to determine the probability of a
given event A, P{A}, is the focus of probability theory.

Probability as relative frequency. Imagine we are able to repeat a random experiment
under identical conditions and count how many of those repetitions result in the event A. The
relative frequency of A, i.e. the ratio

the number of repetitions resulting in A

total number of repetitions
,

approaches a fixed limit value as the number of repetitions increases. This limit value is defined as
P{A}.

As a simple example, in the experiment of tossing a particular coin, suppose we are interested
in the event A of getting a ‘head’. We can toss the coin 1000 times (i.e. do 1000 replications of
the experiment) and record the number of heads out of the 1000 replications. Then the relative
frequency of A out of the 1000 replications is the proportion of heads observed.

Sometimes, however, it is much easier to find P{A} by using some ‘common knowledge’ about
probability. For example, if the coin in the example above is fair (i.e. P{‘head′} = P{‘tail′}), then
this information and the common knowledge that P{‘head′}+P{‘tail′} = 1 immediately imply that
P{‘head′} = 0.5 and P{‘tail′} = 0.5. Next, the essential ‘common knowledge’ about probability
will be formalized as the axioms of probability, which form the foundation of probability theory.
But before that, we need to learn a bit more about the event space (collection of all events).

2.1.3 Union, intersection, mutually exclusive and complementary events

For us to proceed we need to establish parallels between probability theory and set theory, which
is taught in calculus. The sample space S is called the whole set and it is composed of all possible
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elementary events (outcomes from a single replicate).

♥ Example 5 Die throw Roll a six-faced die and observe the score on the uppermost face.
Here S = {1, 2, 3, 4, 5, 6}, which is composed of six elementary events.

The union of two given events A and B, denoted as (A or B) or A∪B, consists of the outcomes
that are either in A or B or both. ‘Event A∪B occurs’ means ‘either A or B occurs or both occur’.

For example, in Example 5, suppose A is the event that an even number is observed. This
event consists of the set of outcomes 2, 4 and 6, i.e. A = {an even number} = {2, 4, 6}. Sup-
pose B is the event that a number larger than 3 is observed. This event consists of the out-
comes 4, 5 and 6, i.e. B = {a number larger than 3} = {4, 5, 6}. Hence the event A ∪ B =
{an even number or a number larger than 3} = {2, 4, 5, 6}. Clearly, when a 6 is observed, both A
and B have occurred.

The intersection of two given events A and B, denoted as (A and B) or A ∩B, consists of the
outcomes that are common to both A and B. ‘Event A∩B occurs’ means ‘both A and B occur’. For
example, in Example 5, A∩B = {4, 6}. Additionally, if C = {a number less than 6} = {1, 2, 3, 4, 5},
the intersection of events A and C is the event A ∩ C = {an even number less than 6} = {2, 4}.

The union and intersection of two events can be generalized in an obvious way to the union and
intersection of more than two events.

Two events A and D are said to be mutually exclusive if A∩D = ∅, where ∅ denotes the empty
set, i.e. A and D have no outcomes in common. Intuitively, ‘A and D are mutually exclusive’
means ‘A and D cannot occur simultaneously in the experiment’.

A

B

Figure 2.1: In the left plot A and B are mutually exclusive; the right plot shows A∪B and A∩B.

In Example 5, if D = {an odd number} = {1, 3, 5}, then A ∩ D = ∅ and so A and D are
mutually exclusive. As expected, A and D cannot occur simultaneously in the experiment.

For a given event A, the complement of A is the event that consists of all the outcomes not in
A and is denoted by A′. Note that A ∪A′ = S and A ∩A′ = ∅.
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Thus, we can see the parallels between Set theory and Probability theory:

Set theory Probability theory

(1) Space Sample space
(2) Element or point Elementary event
(3) Set Event

2.1.4 Axioms of probability

Here are the three axioms of probability:

A1 P{S} = 1,

A2 0 ≤ P{A} ≤ 1 for any event A,

A3 P{A ∪B} = P{A}+ P{B} provided that A and B are mutually exclusive events.

Here are some of the consequences of the axioms of probability:

(1) For any event A, P{A} = 1− P{A′}.

(2) From (1) and Axiom A1, P{∅} = 1 − P{S} = 0. Hence if A and B are mutually exclusive
events, then P{A ∩B} = 0.

(3) If D is a subset of E, D ⊂ E, then P{E ∩D′} = P{E} − P{D} which implies for arbitrary
events A and B, P{A ∩B′} = P{A} − P{A ∩B}.

(4) It can be shown by mathematical induction that Axiom A3 holds for more than two mutually
exclusive events:

P{A1 ∪A2 ∪ · · · ∪Ak} = P{A1}+ P{A2}+ . . .+ P{Ak}
provided that A1, . . . , Ak are mutually exclusive events.

Hence, the probability of an event A is the sum of the probabilities of the individual outcomes
that make up the event.

(5) For the union of two arbitrary events, we have the General addition rule: For any two events
A and B,

P{A ∪B} = P{A}+ P{B} − P{A ∩B}.

Proof: We can write A∪B = (A∩B′)∪ (A∩B)∪ (A′ ∩B). All three of these are mutually
exclusive events. Hence,

P{A ∪B} = P{A ∩B′}+ P{A ∩B}+ P{A′ ∩B}
= P{A} − P{A ∩B}+ P{A ∩B}+ P{B} − P{A ∩B}
= P{A}+ P{B} − P{A ∩B}.

(6) The sum of the probabilities of all the outcomes in the sample space S is 1.
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2.1.5 Application to an experiment with equally likely outcomes

For an experiment with N equally likely possible outcomes, the axioms (and the consequences
above) can be used to find P{A} of any event A in the following way.

From consequence (4), we assign probability 1/N to each outcome.

For any event A, we find P{A} by adding up 1/N for each of the outcomes in event A:

P{A} =
number of outcomes in A

total number of possible outcomes of the experiment
.

Return to Example 5 where a six-faced die is rolled. Suppose that one wins a bet if a 6 is
rolled. Then the probability of winning the bet is 1/6 as there are six possible outcomes in the
sample space and exactly one of those, 6, wins the bet. Suppose A denotes the event that an
even-numbered face is rolled. Then P{A} = 3/6 = 1/2 as we can expect.

♥ Example 6 Dice throw Roll 2 distinguishable dice and observe the scores. Here S =
{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), . . . , (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)} which consists of 36
possible outcomes or elementary events, A1, . . . , A36. What is the probability of the outcome 6 in
both the dice? The required probability is 1/36. What is the probability that the sum of the two
dice is greater than 6? How about the probability that the sum is less than any number, e.g. 8?
Hint: Write down the sum for each of the 36 outcomes and then find the probabilities asked just
by inspection. Remember, each of the 36 outcomes has equal probability 1/36.

2.1.6 Take home points

This lecture has laid the foundation for studying probability. We discussed two types of probabil-
ities, subjective and objective by relative frequencies. Using three axioms of probability we have
derived the elementary rules for probability. We then discussed how we can use elementary laws of
probability to find the probabilities of some events from the dice throw example.

The next lecture will continue to find probabilities using specialist counting techniques called
permutation and combination. This will allow us to find probabilities in a number of practical
situations.

2.2 Lecture 5: Using combinatorics to find probability

2.2.1 Lecture mission

We will learn common counting techniques. Suppose there are 4 boys and 6 girls available for a
committee membership, but there are only 3 posts. How many possible committees can be formed?
How many of those will be girls only?

The UK National Lottery selects 6 numbers at random from 1 to 49. I bought one ticket - what
is the probability that I will win the jackpot?
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2.2.2 Multiplication rule of counting

To complete a specific task, one has to complete k(≥ 1) sub-tasks sequentially. If there are ni
different ways to complete the i-th sub-task (i = 1, . . . , k) then there are n1×n2× . . .×nk different
ways to complete the task.

♥ Example 7 Counting Suppose there are 7 routes to London from Southampton and then
there are 5 routes to Cambridge out of London. How many ways can I travel to Cambridge from
Southampton via London. The answer is obviously 35.

The number of permutations of k from n: nPk

The task is to select k(≥ 1) from the n (n ≥ k) available people and sit the k selected people in k
(different) chairs. By considering the i-th sub-task as selecting a person to sit in the i-th chair (i =
1, . . . , k), it follows directly from the multiplication rule above that there are n(n−1) · · · (n−[k−1])
ways to complete the task. The number n(n−1) · · · (n−[k−1]) is called the number of permutations
of k from n and denoted by

nPk = n(n− 1) · · · (n− [k − 1]).

In particular, when k = n we have nPn = n(n−1) · · · 1, which is called ‘n factorial’ and denoted
as n!. Note that 0! is defined to be 1. It is clear that

nPk = n(n− 1) · · · (n− [k − 1]) =
n(n− 1) · · · (n− [k − 1])× (n− k)!

(n− k)!
=

n!

(n− k)!
.

♥ Example 8 Football How many possible rankings are there for the 20 football teams in
the premier league at the end of a season? This number is given by 20P20 = 20!, which is a huge
number! How many possible permutations are there for the top 4 positions who will qualify to play
in Europe in the next season? This number is given by 20P4 = 20× 19× 18× 17.

The number of combinations of k from n: nCk or
(
n
k

)
The task is to select k(≥ 1) from the n (n ≥ k) available people. Note that this task does NOT
involve sitting the k selected people in k (different) chairs. We want to find the number of possible
ways to complete this task, which is denoted as nCk or

(
n
k

)
.

For this, let us reconsider the task of “selecting k(≥ 1) from the n (n ≥ k) available people and
sitting the k selected people in k (different) chairs”, which we already know from the discussion
above has nPk ways to complete.

Alternatively, to complete this task, one has to complete two sub-tasks sequentially. The first
sub-task is to select k(≥ 1) from the n (n ≥ k) available people, which has nCk ways. The second
sub-task is to sit the k selected people in k (different) chairs, which has k! ways. It follows directly
from the multiplication rule that there are nCk × k! to complete the task. Hence we have

nPk = nCk × k!, i.e., nCk =
nPk
k!

=
n!

(n− k)!k!
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♥ Example 9 Football How many possible ways are there to choose 3 teams for the bottom
positions of the premier league table at the end of a season? This number is given by 20C3 =
20× 19× 18/3!, which does not take into consideration the rankings of the three bottom teams!

♥ Example 10 Microchip A box contains 12 microchips of which 4 are faulty. A sample of size
3 is drawn from the box without replacement.

• How many selections of 3 can be made? 12C3.

• How many samples have all 3 chips faulty? 4C3.

• How many selections have exactly 2 faulty chips? 8C1
4C2.

• How many samples of 3 have 2 or more faulty chips? 8C1
4C2 + 4C3

More examples and details regarding the combinations are provided in Section A.3. You are
strongly recommended to read that section now.

2.2.3 Calculation of probabilities of events under sampling ‘at random’

For the experiment of ‘selecting a sample of size n from a box of N items without replacement’,
a sample is said to be selected at random if all the possible samples of size n are equally likely to
be selected. All the possible samples are then equally likely outcomes of the experiment and so
assigned equal probabilities.

♥ Example 11 Microchip continued In Example 10 assume that 3 microchips are selected at
random without replacement. Then

• each outcome (sample of size 3) has probability 1/12C3.

• P{all 3 selected microchips are faulty} = 4C3/
12C3.

• P{2 chips are faulty} = 8C1
4C2/

12C3.

• P{2 or more chips are faulty} = (8C1
4C2 + 4C3)/12C3.

2.2.4 A general ‘urn problem’

Example 10 is one particular case of the following general urn problem which can be solved by the
same technique.

A sample of size n is drawn at random without replacement from a box of N items containing
a proportion p of defective items.

• How many defective items are in the box? Np. How many good items are there? N(1− p).
Assume these to be integers.
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• The probability of exactly x number of defectives in the sample of n is

NpCx
N(1−p)Cn−x
NCn

• Which values of x (in terms of N , n and p) make this expression well defined?

We’ll see later that these values of x and the corresponding probabilities make up what is called
the hyper-geometric distribution.

♥ Example 12 Selecting a committee There are 10 students available for a committee of
which 4 are boys and 6 are girls. A random sample of 3 students are chosen to form the committee
- what is the probability that exactly one is a boy?

The total number of possible outcomes of the experiment is equal to the number of ways of
selecting 3 students from 10 and given by 10C3. The number of outcomes in the event ‘exactly one
is a boy’ is equal to the number of ways of selecting 3 students from 10 with exactly one boy, and
given by 4C1

6C2.
Hence

P{exactly one boy} =
number of ways of selecting one boy and two girls

number of ways of selecting 3 students

=
4C1

6C2

10C3
=

4× 15

120
=

1

2
.

Similarly,

P{two boys} =
4C2

6C1

10C3
=

6× 6

120
=

3

10
.

♥ Example 13 The National Lottery In Lotto, a winning ticket has six numbers from 1 to 49
matching those on the balls drawn on a Wednesday or Saturday evening. The ‘experiment’ consists
of drawing the balls from a box containing 49 balls. The ‘randomness’, the equal chance of any set
of six numbers being drawn, is ensured by the spinning machine, which rotates the balls during the
selection process. What is the probability of winning the jackpot?

Total number of possible selections of six balls/numbers is given by 49C6.
There is only 1 selection for winning the jackpot. Hence

P{jackpot} =
1

49C6
= 7.15× 10−8.

which is roughly 1 in 13.98 million.
Other prizes are given for fewer matches. The corresponding probabilities are:

P{5 matches} =
6C5

43C1

49C6
= 1.84× 10−5.

P{4 matches} =
6C4

43C2

49C6
= 0.0009686197

P{3 matches} =
6C3

43C3

49C6
= 0.0176504
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There is one other way of winning by using the bonus ball – matching 5 of the selected 6 balls
plus matching the bonus ball. The probability of this is given by

P{5 matches + bonus} =
6

49C6
= 4.29× 10−7.

Adding all these probabilities of winning some kind of prize together gives

P{winning} ≈ 0.0186 ≈ 1/53.7.

So a player buying one ticket each week would expect to win a prize, (most likely a £10 prize for
matching three numbers) about once a year

2.2.5 Take home points

We have learned the multiplication rule of counting and the number of permutations and combina-
tions. We have applied the rules to find probabilities of interesting events, e.g. the jackpot in the
UK National Lottery.

2.3 Lecture 6: Conditional probability and the Bayes Theorem

2.3.1 Lecture mission

This lecture is all about using additional information, i.e. things that have already happened, in
the calculation of probabilities. For example, a person may have a certain disease, e.g. diabetes or
HIV/AIDS, whether or not they show any symptoms of it. Suppose a randomly selected person is
found to have the symptom. Given this additional information, what is the probability that they
have the disease? Note that having the symptom does not fully guarantee that the person has the
disease.

Applications of conditional probability occur naturally in actuarial science and medical stud-
ies, where conditional probabilities such as “what is the probability that a person will survive for
another 20 years given that they are still alive at the age of 40?” are calculated.

In many real problems, one has to determine the probability of an event A when one already
has some partial knowledge of the outcome of an experiment, i.e. another event B has already
occurred. For this, one needs to find the conditional probability.

♥ Example 14 Dice throw continued Return to the rolling of a fair die (Example 5). Let

A = {a number greater than 3} = {4, 5, 6},
B = {an even number} = {2, 4, 6}.

It is clear that P{B} = 3/6 = 1/2. This is the unconditional probability of the event B. It is
sometimes called the prior probability of B.
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However, suppose that we are told that the event A has already occurred. What is the proba-
bility of B now given that A has already happened?

The sample space of the experiment is S = {1, 2, 3, 4, 5, 6}, which contains n = 6 equally likely
outcomes.

Given the partial knowledge that event A has occurred, only the nA = 3 outcomes in A =
{4, 5, 6} could have occurred. However, only some of the outcomes in B among these nA outcomes
in A will make event B occur; the number of such outcomes is given by the number of outcomes
nA∩B in both A and B, i.e., A ∩ B, and equal to 2. Hence the probability of B, given the partial
knowledge that event A has occurred, is equal to

2

3
=
nA∩B
nA

=
nA∩B/n

nA/n
=
P{A ∩B}
P{A}

.

Hence we say that P{B|A} = 2
3 , which is often interpreted as the posterior probability of B given

A. The additional knowledge that A has already occurred has helped us to revise the prior proba-
bility of 1/2 to 2/3.

This simple example leads to the following general definition of conditional probability.

2.3.2 Definition of conditional probability

For events A and B with P{A} > 0, the conditional probability of event B, given that event A has
occurred, is

P{B|A} =
P{A ∩B}
P{A}

.

♥ Example 15 Of all individuals buying a mobile phone, 60% include a 64GB hard disk in their
purchase, 40% include a 16 MP camera and 30% include both. If a randomly selected purchase
includes a 16 MP camera, what is the probability that a 64GB hard disk is also included?

The conditional probability is given by:

P{64GB|16 MP} =
P{64GB ∩ 16 MP}

P{16 MP}
=

0.3

0.4
= 0.75.

2.3.3 Multiplication rule of conditional probability

By rearranging the conditional probability definition, we obtain the multiplication rule of condi-
tional probability as follows:

P{A ∩B} = P{A}P{B|A}.
Clearly the roles of A and B could be interchanged leading to:

P{A ∩B} = P{B}P{A|B}.
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Hence the multiplication rule of conditional probability for two events is:

P{A ∩B} = P{B}P{A|B} = P{A}P{B|A}.

It is straightforward to show by mathematical induction the following multiplication rule of condi-
tional probability for k(≥ 2) events A1, A2, . . . , Ak:

P{A1 ∩A2 ∩ . . . ∩Ak} = P{A1}P{A2|A1}P{A3|A1 ∩A2} . . . P{Ak|A1 ∩A2 ∩ . . . ∩Ak−1}.

♥ Example 16 Selecting a committee continued Return to the committee selection example
(Example 12), where there are 4 boys (B) and 6 girls (G). We want to select a 2-person committee.
Find:

(i) the probability that both are boys,

(ii) the probability that one is a boy and the other is a girl.

We have already dealt with this type of urn problem by using the combinatorial method. Here,
the multiplication rule is used instead.

Let Bi be the event that the i-th person is a boy, and Gi be the event that the i-th person is a
girl, i = 1, 2. Then

Prob in (i) = P{B1 ∩B2} = P{B1}P{B2|B1} =
4

10
× 3

9
.

Prob in (ii) = P{B1∩G2}+P{G1∩B2} = P{B1}P{G2|B1}+P{G1}P{B2|G1} =
4

10
× 6

9
+

6

10
× 4

9
.

You can find the probability that ‘both are girls’ in a similar way.

2.3.4 Total probability formula

♥ Example 17 Phones Suppose that in our world there are only three phone manufacturing
companies: A Pale, B Sung and C Windows, and their market shares are respectively 30, 40 and 30
percent. Suppose also that respectively 5, 8, and 10 percent of their phones become faulty within
one year. If I buy a phone randomly (ignoring the manufacturer), what is the probability that my
phone will develop a fault within one year? After finding the probability, suppose that my phone
developed a fault in the first year - what is the probability that it was made by A Pale?

Company Market share Percent defective

A Pale 30% 5%
B Sung 40% 8%
C Windows 30% 10%

To answer this type of question, we derive two of the most useful results in probability theory:
the total probability formula and the Bayes theorem. First, let us derive the total probability
formula.
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Let B1, B2, . . . , Bk be a set of mutually exclusive, i.e.

Bi ∩Bj = ∅ for all 1 ≤ i 6= j ≤ k,

and exhaustive events, i.e.:

B1 ∪B2 ∪ . . . ∪Bk = S.

Now any event A can be represented by

A = A ∩ S = (A ∩B1) ∪ (A ∩B2) ∪ . . . ∪ (A ∩Bk)

where (A ∩ B1), (A ∩ B2), . . . , (A ∩ Bk) are mutually exclusive events. Hence the Axiom A3 of
probability gives

P{A} = P{A ∩B1}+ P{A ∩B2}+ . . .+ P{A ∩Bk}
= P{B1}P{A|B1}+ P{B2}P{A|B2}+ . . .+ P{Bk}P{A|Bk};

this last expression is called the total probability formula for P{A}.

Figure 2.2: The left figure shows the mutually exclusive and exhaustive events B1, . . . , B6 (they
form a partition of the sample space); the right figure shows a possible event A.

♥ Example 18 Phones continued We can now find the probability of the event, say A, that
a randomly selected phone develops a fault within one year. Let B1, B2, B3 be the events that the
phone is manufactured respectively by companies A Pale, B Sung and C Windows. Then we have:

P{A} = P{B1}P{A|B1}+ P{B2}P{A|B2}+ P{B3}P{A|B3}
= 0.30× 0.05 + 0.40× 0.08 + 0.30× 0.10

= 0.077.

Now suppose that my phone has developed a fault within one year. What is the probability that
it was manufactured by A Pale? To answer this we need to introduce the Bayes Theorem.
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2.3.5 The Bayes theorem

Let A be an event, and let B1, B2, . . . , Bk be a set of mutually exclusive and exhaustive events.
Then, for i = 1, . . . , k,

P{Bi|A} =
P{Bi}P{A|Bi}∑k
j=1 P{Bj}P{A|Bj}

Proof: Use the multiplication rule of conditional probability twice to give

P{Bi|A} =
P{Bi ∩A}
P{A}

=
P{Bi}P{A|Bi}

P{A}
.

The Bayes theorem follows directly by substituting P{A} by the total probability formula.
The probability, P{Bi|A} is called the posterior probability of Bi and P{Bi} is called the prior
probability. The Bayes theorem is the rule that converts the prior probability into the poste-
rior probability by using the additional information that some other event, A above, has already
occurred.

♥ Example 19 Phones continued The probability that my faulty phone was manufactured
by A Pale is

P{B1|A} =
P{B1}P{A|B1}

P{A}
=

0.30× 0.05

0.077
= 0.1948.

Similarly, the probability that the faulty phone was manufactured by B Sung is 0.4156, and the
probability that it was manufactured by C Windows is 1-0.1948-0.4156 = 0.3896.

The worked examples section contains further illustrations of the Bayes theorem. Note that∑k
i=1 P{Bi|A} = 1. Why? Nowadays the Bayes theorem is used to make statistical inference as

well.

2.3.6 Take home points

We have learned three important concepts: (i) conditional probability, (ii) formula for total proba-
bility and (iii) Bayes theorem. Much of statistical theory depends on these fundamental concepts.
Spend extra time to learn these and try all the examples and exercises.
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2.4 Lecture 7: Independent events

2.4.1 Lecture mission

The previous lecture has shown that probability of an event may change if we have additional
information. However, in many situations the probabilities may not change. For example, the
probability of getting an ‘A’ in Math1024 should not depend on the student’s race and sex; the
results of two coin tosses should not depend on each other; an expectant mother should not think
that she must have a higher probability of having a son given that her previous three children were
all girls.
In this lecture we will learn about the probabilities of independent events. Much of statistical
theory relies on the concept of independence.

2.4.2 Definition

We have seen examples where prior knowledge that an event A has occurred has changed the prob-
ability that event B occurs. There are many situations where this does not happen. The events
are then said to be independent.

Intuitively, events A and B are independent if the occurrence of one event does not affect the
probability that the other event occurs.

This is equivalent to saying that

P{B|A} = P{B}, where P{A} > 0, and P{A|B} = P{A}, where P{B} > 0.

These give the following formal definition.

A and B are independent events if P{A∩B} = P{A}P{B}.

♥ Example 20 Die throw

Throw a fair die. Let A be the event that “the result is even” and B be the event that “the
result is greater than 3”. We want to show that A and B are not independent.

For this, we have P{A∩B} = P{either a 4 or 6 thrown} = 1/3, but P{A} = 1/2 and P{B} =
1/2, so that P{A}P{B} = 1/4 6= 1/3 = P{A∩B}. Therefore A and B are not independent events.

Note that independence is not the same as the mutually exclusive property. When two events, A
and B, are mutually exclusive, the probability of their intersection, A∩B, is zero, i.e. P{A∩B} = 0.
But if the two events are independent then P{A ∩B} = P{A} × P{B}.

Independence is often assumed on physical grounds, although sometimes incorrectly. There are
serious consequences for wrongly assuming independence, e.g. the financial crisis in 2008. However,
when the events are independent then the simpler product formula for joint probability is then used
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instead of the formula involving more complicated conditional probabilities.

♥ Example 21 Two fair dice when shaken together are assumed to behave independently. Hence
the probability of two sixes is 1/6× 1/6 = 1/36.

♥ Example 22 Assessing risk in legal cases In recent years there have been some disastrous
miscarriages of justice as a result of incorrect assumption of independence. Please read “Incorrect
use of independence – Sally Clark Case” on Blackboard.

Independence of complementary events: If A and B are independent, so are A′ and B′.
Proof: Given that P{A ∩B} = P{A}P{B}, we need to show that P{A′ ∩B′} = P{A′}P{B′}.

This follows from

P{A′ ∩B′} = 1− P{A ∪B}
= 1− [P{A}+ P{B} − P{A ∩B}]
= 1− [P{A}+ P{B} − P{A}P{B}]
= [1− P{A}]− P{B}[1− P{A}]
= [1− P{A}][1− P{B}] = P{A′}P{B′}

The ideas of conditional probability and independence can be extended to more than two events.

Definition Three events A, B and C are defined to be independent if

P{A ∩B} = P{A}P{B}, P{A ∩ C} = P{A}P{C}, P{B ∩ C} = P{B}P{C}, (2.1)

P{A ∩B ∩ C} = P{A}P{B}P{C} (2.2)

Note that (2.1) does NOT imply (2.2), as shown by the next example. Hence, to show the
independence of A, B and C, it is necessary to show that both (2.1) and (2.2) hold.

♥ Example 23 A box contains eight tickets, each labelled with a binary number. Two are
labelled with the binary number 111, two are labelled with 100, two with 010 and two with 001.
An experiment consists of drawing one ticket at random from the box.

Let A be the event “the first digit is 1”, B the event “the second digit is 1” and C be the event
“the third digit is 1”. It is clear that P{A} = P{B} = P{C} = 4/8 = 1/2 and P{A ∩ B} =
P{A ∩ C} = P{B ∩ C} = 1/4, so the events are pairwise independent, i.e. (2.1) holds. However
P{A ∩ B ∩ C} = 2/8 6= P{A}P{B}P{C} = 1/8. So (2.2) does not hold and A, B and C are not
independent.

Bernoulli trials The notion of independent events naturally leads to a set of independent trials
(or random experiments, e.g. repeated coin tossing). A set of independent trials, where each trial
has only two possible outcomes, conveniently called success (S) and failure (F), and the probability
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of success is the same in each trial are called a set of Bernoulli trials. There are lots of fun examples
involving Bernoulli trials.

♥ Example 24 Feller’s road crossing example The flow of traffic at a certain street crossing
is such that the probability of a car passing during any given second is p and cars arrive randomly,
i.e. there is no interaction between the passing of cars at different seconds. Treating seconds as
indivisible time units, and supposing that a pedestrian can cross the street only if no car is to
pass during the next three seconds, find the probability that the pedestrian has to wait for exactly
k = 0, 1, 2, 3, 4 seconds.

Let Ci denote the event that a car comes in the ith second and let Ni denote the event that no
car arrives in the ith second.

1. Consider k = 0. The pedestrian does not have to wait if and only if there are no cars in the
next three seconds, i.e. the event N1N2N3. Now the arrival of the cars in successive seconds
are independent and the probability of no car coming in any second is q = 1− p. Hence the
answer is P{N1N2N3} = q · q · q = q3.

2. Consider k = 1. The person has to wait for one second if there is a car in the first second
and none in the next three, i.e. the event C1N2N3N4. Hence the probability of that is pq3.

3. Consider k = 2. The person has to wait two seconds if and only if there is a car in the 2nd
second but none in the next three. It does not matter if there is a car or none in the first
second. Hence:

P{wait 2 seconds} = P{C1C2N3N4N5}+ P{N1C2N3N4N5} = p · p · q3 + q · p · q3 = pq3.

4. Consider k = 3. The person has to wait for three seconds if and only if a car passes in the
3rd second but none in the next three, C3N4N5N6. Anything can happen in the first two
seconds, i.e. C1C2, C1N2, N1C2, N1N2 − all these four cases are mutually exclusive. Hence,

P{wait 3 seconds} = P{C1C2C3N4N5N6}+ P{N1C2C3N4N5N6}
+P{C1N2C3N4N5N6}+ P{N1N2C3N4N5N6}

= p · p · p · q3 + p · q · p · q3 + q · p · p · q3 + q · q · p · q3

= pq3.

5. Consider k = 4. This is more complicated because the person has to wait exactly 4 seconds
if and only if a car passes in at least one of the first 3 seconds, one passes at the 4th but none
pass in the next 3 seconds. The probability that at least one passes in the first three seconds
is 1 minus the probability that there is none in the first 3 seconds. This probability is 1− q3.
Hence the answer is (1− q3)pq3.

2.4.3 Take home points

We have learned the concept of independent events. It is much easier to calculate probabilities
when events are independent. However, there is danger in assuming events to be independent when
they are not. For example, there may be serial or spatial dependence! The concept of Bernoulli
trials has been introduced. More examples to follow!
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2.5 Lecture 8: Fun probability calculation for independent events

2.5.1 Lecture mission

We are continuing with the notion of independent events. This lecture will discuss two substantial
examples: one is called system reliability where we have to find the probability of a system, built
from several independent components, functioning. For example, we want to find out the probability
that a machine/phone or module-based software system will continue to function. In the second
substantial example we would like to cleverly find out probabilities of sensitive events, e.g. do I
have HIV/AIDS or did I take any illegal drugs during last summer’s music festival?

2.5.2 System reliability

Two components in series

Suppose each component has a separate operating mechanism. This means that they operate
independently.

Let Ai be the event “component i works when required” and let P{Ai} = pi for i = 1, 2. For
the system of A1 and A2 in series, the event “the system works” is the event {A1 ∩ A2}. Hence
P{system works} = P{A1 ∩A2} = P{A1}P{A2} = p1p2.

The reliability gets lower when components are included in series. For n components in series,
P{system works} = p1p2 · · · pn. When pi = p for all i, the reliability of a series of n components is
P{system works} = pn.

Two components in parallel

For the system of A1 and A2 in parallel, the event “the system works when required” is now given
by the event {A1 ∪A2}. Hence

P{system works} = P{A1 ∪A2} = P{A1}+ P{A2} − P{A1 ∩A2} = p1 + p2 − p1p2.

This is greater than either p1 or p2 so that the inclusion of a (redundant) component in parallel
increases the reliability of the system. Another way of arriving at this result uses complementary
events:

P{system works} = 1− P{system fails}
= 1− P{A′1 ∩A′2}
= 1− P{A′1}P{A′2}
= 1− (1− p1)(1− p2)

= p1 + p2 − p1p2.

In general, with n components in parallel, the reliability of the system is

P{system works} = 1− (1− p1)(1− p2) · · · (1− pn).

If pi = p for all i, we have P{system works} = 1− (1− p)n.
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A general system

The ideas above can be combined to evaluate the reliability of more complex systems.

♥ Example 25 Switches Six switches make up the circuit shown in the graph.

Each has the probability pi = P{Di} of closing correctly; the mechanisms are independent; all
are operated by the same impulse. Then

P{current flows when required} = p1 × [1− (1− p2)(1− p2)]× [1− (1− p3)(1− p3)(1− p3)].

There are some additional examples of reliability applications given in the “Reliability Exam-
ples” document available on Blackboard. You are advised to read through and understand these
additional examples/applications.

2.5.3 The randomised response technique

This is an important application of the total probability formula - it is used to try to get honest
answers to sensitive questions.

Often we wish to estimate the proportion of people in a population who would not respond ‘yes’
to some sensitive question such as:

• Have you taken an illegal drug during the last 12 months?

• Have you had an abortion?

• Do you have HIV/AIDs?

• Are you a racist?

It is unlikely that truthful answers will be given in an open questionnaire, even if it is stressed
that the responses would be treated with anonymity. Some years ago a randomised response
technique was introduced to overcome this difficulty. This is a simple application of conditional
probability. It ensures that the interviewee can answer truthfully without the interviewer (or any-
one else) knowing the answer to the sensitive question. How? Consider two alternative questions,
for example:

Question 1: Was your mother born in January?
Question 2: Have you ever taken illegal substances in the last 12 months?
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Question 1 should not be contentious and should not be such that the interviewer could find
out the true answer.

The respondent answers only 1 of the two questions. Which question is answered by the respon-
dent is determined by a randomisation device, the result of which is known only to the respondent.
The interviewer records only whether the answer given was Yes or No (and he/she does not know
which question has been answered). The proportion of Yes answers to the question of interest can
be estimated from the total proportion of Yes answers obtained. Carry out this simple experiment:

Toss a coin - do not reveal the result of the coin toss!
If heads - answer Question 1: Was your mother born in January?
If tails - answer Question 2: Have you ever taken illegal substances in the last 12 months?
We need to record the following information for the outcome of the experiment:
Total number in sample = n;
Total answering Yes = r, so that an estimate of P{Yes} is r/n.
This information can be used to estimate the proportion of Yes answers to the main question

of interest, Question 2.
Suppose that

• Q1 is the event that ‘Q1 was answered’

• Q2 is the event that ‘Q2 was answered’

Then, assuming that the coin was unbiased, P{Q1} = 0.5 and P{Q2} = 0.5. Also, assuming that
birthdays of mothers are evenly distributed over the months, we have that the probability that the
interviewee will answer Yes to Q1 is 1/12. Let Y be the event that a ‘Yes’ answer is given. Then
the total probability formula gives

P{Y } = P{Q1}P{Y |Q1}+ P{Q2}P{Y |Q2},

which leads to
r

n
≈ 1

2
× 1

12
+

1

2
× P{Y |Q2}.

Hence

P{Y |Q2} ≈ 2 · r
n
− 1

12
.

2.5.4 Take home points

In this lecture we have learned a couple of further applications of elementary rules of probability.
You will see many more examples in the exercise sheets. In many subsequent second and third year
modules these laws of probabilities must be applied to get answers to more difficult questions.

We, however, will move on to the next chapter on random variables, which formalises the
concepts of probabilities in structured practical cases. The concept of random variables allows us
to calculate probabilities of random events much more easily in structured ways.
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Chapter 3

Random Variables and Their
Probability Distributions

Chapter mission

Last chapter’s combinatorial probabilities are difficult to find and very problem-specific. Instead,
in this chapter we shall find easier ways to calculate probability in structured cases. The outcomes
of random experiments will be represented as values of a variable which will be random since the
outcomes are random (or un-predictable with certainty). In so doing, we will make our life a lot
easier in calculating probabilities in many stylised situations which represent reality. For example,
we shall learn to calculate what is the probability that a computer will make fewer than 10 errors
while making 1015 computations when it has a very tiny chance, 10−14, of making an erroneous
computation.

3.1 Lecture 9: Definition of a random variable

3.1.1 Lecture mission

In this lecture we will learn about the probability distribution of a random variable defined by
its probability function. The probability function will be called the probability mass function for
discrete random variables and the probability density function for continuous random variables.

3.1.2 Introduction

A random variable defines a one-to-one mapping of the sample space consisting of all possible
outcomes of a random experiment to the set of real numbers. For example, I toss a coin. Assuming
the coin is fair, there are two possible equally likely outcomes: head or tail. These two outcomes
must be mapped to real numbers. For convenience, I may define the mapping which assigns the
value 1 if head turns up and 0 otherwise. Hence, we have the mapping:

Head → 1, Tail → 0.

43
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We can conveniently denote the random variable by X which is the number of heads obtained by
tossing a single coin. Obviously, all possible values of X are 0 and 1.

You will say that this is a trivial example. Indeed it is. But it is very easy to generalise the
concept of random variables. Simply define a mapping of the outcomes of a random experiment
to the real number space. For example, I toss the coin n times and count the number of heads
and denote that to be X. Obviously, X can take any real positive integer value between 0 and
n. Among other examples, suppose I select a University of Southampton student at random and
measure their height. The outcome in metres will be a number between one metre and two metres
for sure. But I can’t exactly tell which value it will be since I do not know which student will be
selected in the first place. However, when a student has been selected I can measure their height
and get a value such as 1.432 metres.

We now introduce two notations: X (or in general the capital letters Y , Z etc.) to denote the
random variable, e.g. height of a randomly selected student, and the corresponding lower case letter
x (y, z) to denote a particular value, e.g. 1.432 metres. We will follow this convention throughout.
For a random variable, say X, we will also adopt the notation P (X ∈ A), read probability that X
belongs to A, instead of the previous P{A} for any event A.

3.1.3 Discrete or continuous random variable

If a random variable has a finite or countably infinite set of values it is called discrete. For example,
the number of Apple computer users among 20 randomly selected students, or the number of credit
cards a randomly selected person has in their wallet.

When the random variable can take any value on the real line it is called a continuous random
variable. For example, the height of a randomly selected student. A random variable can also take
a mixture of discrete and continuous values, e.g. volume of precipitation collected in a day; some
days it could be zero, on other days it could be a continuous measurement, e.g. 1.234 mm.

3.1.4 Probability distribution of a random variable

Recall the first axiom of probability (P{S} = 1), which means total probability equals 1. Since
a random variable is merely a mapping from the outcome space to the real line, the combined
probability of all possible values of the random variable must be equal to 1.

A probability distribution distributes the total probability 1 among the
possible values of the random variable.

For example, returning to the coin-tossing experiment, if the probability of getting a head with
a coin is p (and therefore the probability of getting a tail is 1− p), then the probability that Y = 0
is 1− p and the probability that Y = 1 is p. This gives us the probability distribution of Y , and we
say that Y has the probability function given by:

P (Y = 0) = 1− p
P (Y = 1) = p

Total = 1.
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This is an example of the Bernoulli distribution with parameter p, perhaps the simplest discrete
distribution.

♥ Example 26 Suppose we consider tossing the coin twice and again defining the random variable
X to be the number of heads obtained. The values that X can take are 0, 1 and 2 with probabilities
(1− p)2, 2p(1− p) and p2, respectively. Here the distribution is:

Value(x) P (X = x)

0 (1− p)2

1 2p(1− p)
2 p2

Total prob 1.

This is a particular case of the Binomial distribution. We will learn about it soon.

In general, for a discrete random variable we define a function f(x) to denote P (X = x) (or
f(y) to denote P (Y = y)) and call the function f(x) the probability function (pf) or probability
mass function (pmf) of the random variable X. Arbitrary functions cannot be a pmf since the
total probability must be 1 and all probabilities are non-negative. Hence, for f(x) to be the pmf
of a random variable X, we require:

1. f(x) ≥ 0 for all possible values of x.

2.
∑
all x

f(x) = 1.

So for the binomial example, we have the following probability distribution.

x f(x) general form

0 (1− p)2 2Cx p
x(1− p)2−x

1 2p(1− p) 2Cx p
x(1− p)2−x

2 p2 2Cx p
x(1− p)2−x

Total 1 1

Note that f(x) = 0 for any other value of x and thus f(x) is a discrete function of x.

Continuous random variable

In many situations (both theoretical and practical) we often encounter random variables that are
inherently continuous because they are measured on a continuum (such as time, length, weight)
or can be conveniently well-approximated by considering them as continuous (such as the annual
income of adults in a population, closing share prices).

For a continuous random variable, P (X = x) is defined to be zero since we assume that the
measurements are continuous and there is zero probability of observing a particular value, e.g. 1.2.
The argument goes that a finer measuring instrument will give us an even more precise measure-
ment than 1.2 and so on. Thus for a continuous random variable we adopt the convention that



3 Random Variables and Their Probability Distributions 46

P (X = x) = 0 for any particular value x on the real line. But we define probabilities for positive
length intervals, e.g. P (1.2 < X < 1.9).

For a continuous random variable X we define its probability by using a continuous function
f(x) which we call its probability density function, abbreviated as its pdf. With the pdf we define
probabilities as integrals, e.g.

P (a < X < b) =

∫ b

a
f(u) du,

which is naturally interpreted as the area under the curve f(x) inside the interval (a, b). Recall
that we do not use f(x) = P (X = x) for any x as by convention we set P (X = x) = 0.

Figure 3.1: The shaded area is P (a < X < b) if the pdf of X is the drawn curve.

Since we are dealing with probabilities which are always between 0 and 1, just any arbitrary
function f(x) cannot be a pdf of some random variable. For f(x) to be a pdf, as in the discrete
case, we must have:

1. f(x) ≥ 0 for all possible values of x, i.e. −∞ < x <∞.

2.
∫∞
−∞ f(u)du = 1.

It is very simple to describe the above two requirements:

(i) the probabilities are non-negative, and (ii) the total probability must be 1,

(recall P{S} = 1), where S is the sample space.

3.1.5 Cumulative distribution function (cdf)

Along with the pdf we also frequently make use of another function which is called the cumulative
distribution function, abbreviated as the cdf. The cdf simply calculates the probability of the
random variable up to its argument. For a discrete random variable, the cdf is the cumulative sum
of the pmf f(u) up to (and including) u = x. That is,

P (X ≤ x) ≡ F (x) =
∑
u≤x

f(u)
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when X is a discrete random variable with pmf f(x).

♥ Example 27 Let X be the number of heads in the experiment of tossing two fair coins. Then
the probability function is

P (X = 0) = 1/4, P (X = 1) = 1/2, P (X = 2) = 1/4.

From the definition, the CDF is given by

F (x) =


0 if x < 0
1/4 if 0 ≤ x < 1
3/4 if 1 ≤ x < 2
1 if x ≥ 2

.

Note that the cdf for a discrete random variable is a step function. The jump-points are the
possible values of the random variable (r.v.), and the height of a jump gives the probability of
the random variable taking that value. It is clear that the probability mass function is uniquely
determined by the cdf.

For a continuous random variable X, the cdf if defined as:

P (X ≤ x) ≡ F (x) =

∫ x

−∞
f(u)du.

The fundamental theorem of calculus then tells us:

f(x) =
dF (x)

dx

that is, for a continuous random variable the pdf is the derivative of the cdf. Also for any random
variable X, P (c < X < d) = F (d)− F (c). Let us consider an example.

♥ Example 28 Uniform distribution Suppose,

f(x) =

{
1
b−a if a < x < b

0 otherwise
.

We now have the cdf F (x) =
∫ x
a

du
b−a = x−a

b−a , a < x < b. A quick check confirms that F ′(x) = f(x).
If a = 0, b = 1 and then P (0.5 < X < 0.75) = F (0.75) − F (0.5) = 0.25. We shall see many more
examples later.

3.1.6 Take home points

In this lecture, we have learnt what the pmf, pdf and cdf of a random variable are. We know the
interrelationships and how to use them to calculate probabilities of interest.



3 Random Variables and Their Probability Distributions 48

3.2 Lecture 10: Expectation and variance of a random variable

3.2.1 Lecture mission

We will discover many more different variables which simply have different probability functions.
In this lecture we will learn about the two most important properties of random variables, i.e. the
mean and the variance.

3.2.2 Mean or expectation

In Chapter 1, we defined the mean and variance of sample data x1, . . . , xn. The random variables
with either a pmf f(x) or a pdf f(x) also have their own mean, which can be called expectation
(central tendency), and variance as well. The mean is called an expectation since it is a value we
can ‘expect’ ! The expectation is defined as:

E(X) =


∑
all x

xf(x) if X is discrete∫∞
−∞ xf(x)dx if X is continuous

.

Thus, roughly speaking:

the expected value is either sum or integral of value times probability.

We use the E(·) notation to denote expectation. The argument is in upper case since it is the
expected value of the random variable which is denoted by an upper case letter. We often use the
Greek letter µ to denote E(X).

♥ Example 29 Discrete Consider the fair-die tossing experiment, with each of the six sides
having a probability of 1/6 of landing face up. Let X be the number on the up-face of the die.
Then

E(X) =

6∑
x=1

xP (X = x) =
6∑

x=1

x/6 = 3.5.

♥ Example 30 Continuous Consider the uniform distribution which has the pdf f(x) = 1
b−a , a <

x < b.
E(X) =

∫∞
−∞ x f(x)dx

=
∫ b
a

x
b−adx

= b2−a2
2(b−a) = b+a

2 ,

the mid-point of the interval (a, b).

If Y = g(X) for any function g(·), then Y is a random variable as well. To find E(Y ) we simply
use the value times probability rule, i.e. the expected value of Y is either sum or integral of its
value, g(x) times probability f(x).

E(Y ) = E(g(X)) =


∑
all x

g(x)f(x) if X is discrete∫∞
−∞ g(x)f(x)dx if X is continuous

.
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For example, if X is continuous, then E(X2) =
∫∞
−∞ x

2 f(x)dx. We prove one important property
of expectation, namely expectation is a linear operator.

Suppose Y = g(X) = aX+b; then E(Y ) = aE(X)+b.

The proof of this is simple and given below for the continuous case. In the discrete case replace
integral (

∫
) by summation (

∑
).

E(Y ) =
∫∞
−∞(ax+ b)f(x)dx

= a
∫∞
−∞ xf(x)dx+ b

∫∞
−∞ f(x)dx

= aE(X) + b,

using the value times probability definition of the expectation and the total probability is 1 property
(
∫∞
−∞ f(x)dx = 1) in the last integral. This is very convenient, e.g. suppose E(X) = 5 and

Y = −2X + 549; then E(Y ) = 539.

Variance of a random variable

The variance measures the variability of a random variable and is defined by:

Var(X) = E(X − µ)2 =


∑
all x

(x− µ)2 f(x) if X is discrete∫∞
−∞(x− µ)2 f(x)dx if X is continuous

,

where µ = E(X), and when the sum or integral exists. They can’t always be assumed to exist!
When the variance exists, it is the expectation of (X − µ)2 where µ is the mean of X. We now
derive an easy formula to calculate the variance:

Var(X) = E(X − µ)2 = E(X2)− µ2.

The proof is given below:
Var(X) = E(X − µ)2

= E(X2 − 2Xµ+ µ2)
= E(X2)− 2µE(X) + µ2

= E(X2)− 2µµ+ µ2

= E(X2)− µ2.

Thus:

the variance of a random variable is the expected value of its square
minus the square of its expected value.

We usually denote the variance by σ2. The square is there to emphasise that the variance of any
random variable is always non-negative. When can the variance be zero? When there is no variation
at all in the random variable, i.e. it takes only a single value µ with probability 1. Hence, there is
nothing random about the random variable – we can predict its outcome with certainty.

The square root of the variance is called the standard deviation of the
random variable.
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♥ Example 31 Uniform Consider the uniform distribution which has the pdf f(x) = 1
b−a , a <

x < b.

E(X2) =
∫ b
a

x2

b−adx

= b3−a3
3(b−a) = b2+ab+a2

3 ,

Hence

Var(X) =
b2 + ab+ a2

3
−
(
b+ a

2

)2

=
(b− a)2

12
,

after simplification.

We prove one important property of the variance.

Suppose Y = aX + b; then Var(Y ) = a2Var(X).

The proof of this is simple and is given below for the continuous case. In the discrete case
replace integral (

∫
) by summation (

∑
).

Var(Y ) = E(Y − E(Y ))2

=
∫∞
−∞(ax+ b− aµ− b)2f(x)dx

= a2
∫∞
−∞(x− µ)2f(x)dx

= a2Var(X).

This is a very useful result, e.g. suppose Var(X) = 25 and Y = −X + 5, 000, 000; then Var(Y ) =
Var(X) = 25 and the standard deviation, σ = 5. In words a location shift, b, does not change
variance but a multiplicative constant, a say, gets squared in variance, a2.

3.2.3 Take home points

In this lecture we have learned what are called the expectation and variance of a random variable.
We have also learned that the expectation operator distributes linearly and the formula for the
variance of a linear function of a random variable.

3.3 Lecture 11: Standard discrete distributions

3.3.1 Lecture mission

In this lecture we will learn about the Bernoulli, Binomial, Hypergeometric and Geometric distri-
butions and their properties.

3.3.2 Bernoulli distribution

The Bernoulli distribution has pmf f(x) = px(1−p)1−x, x = 0, 1. Hence E(X) = 0·(1−p)+1·p = p,
E(X2) = 02 · (1 − p) + 12 · p = p and Var(X) = E(X2) − (E(X))2 = p − p2 = p(1 − p). Hence
Var(X) < E(X).
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3.3.3 Binomial distribution

Suppose that we have a sequence of n Bernoulli trials (defined in Lecture 7, e.g. coin tosses) such
that we get a success (S) or failure (F ) with probabilities P{S} = p and P{F} = 1−p respectively.
Let X be the number of successs in the n trials. Then X is called a binomial random variable with
parameters n and p.

An outcome of the experiment (of carrying out n such independent trials) is represented by a
sequence of S’s and F ’s (such as SS...FS...SF ) that comprises x S’s, and (n− x) F ’s.

The probability associated with this outcome is

P{SS...FS...SF} = pp · · · (1− p)p · · · p(1− p) = px(1− p)n−x.

For this sequence, X = x, but there are many other sequences which will also give X = x. In
fact there are

(
n
x

)
such sequences. Hence

P (X = x) =

(
n

x

)
px(1− p)n−x, x = 0, 1, . . . , n.

This is the pmf of the Binomial Distribution with parameters n and p, often written as Bin(n, p).

How can we guarantee that
∑n

x=0 P (X = x) = 1? This guarantee is provided by the binomial
theorem:

(a+ b)n = bn +

(
n

1

)
abn−1 + · · ·+

(
n

x

)
axbn−x + · · ·+ an.

To prove,
∑n

x=0 P (X = x) = 1, i.e. to prove,
∑n

x=0

(
n
x

)
px(1−p)n−x = 1, choose a = p and b = 1−p

in the binomial theorem.

♥ Example 32 Suppose that widgets are manufactured in a mass production process with 1%
defective. The widgets are packaged in bags of 10 with a money-back guarantee if more than 1
widget per bag is defective. For what proportion of bags would the company have to provide a
refund?

Firstly, we want to find the probability that a randomly selected bag has at most 1 defective
widget. Note that the number of defective widgets in a bag X, X ∼ Bin(n = 10, p = 0.01). So, this
probability is equal to

P (X = 0) + P (X = 1) = (0.99)10 + 10(0.01)1(0.99)9 = 0.9957.

Hence the probability that a refund is required is 1− 0.9957 = 0.0043, i.e. only just over 4 in 1000
bags will incur the refund on average.

Using R to calculate probabilities

Probabilities under all the standard distributions have been calculated in R and will be used
throughout MATH1024. You will not be required to use any tables. For the binomial distribution
the command dbinom(x=3, size=5, prob=0.34) calculates the pmf of Bin(n = 5, p = 0.34) at
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x = 3. That is, the command dbinom(x=3, size=5, prob=0.34) will return the value P (X =
3) =

(
5
3

)
(0.34)3(1 − 0.34)5−3. The command pbinom returns the cdf or the probability up to

and including the argument. Thus pbinom(q=3, size=5, prob=0.34) will return the value of
P (X ≤ 3) when X ∼ Bin(n = 5, p = 0.34). As a check, in the above example the command is
pbinom(q=1, size=10, prob=0.01), which returns 0.9957338.

♥ Example 33 A binomial random variable can also be described using the urn model. Suppose
we have an urn (population) containing N individuals, a proportion p of which are of type S and a
proportion 1− p of type F . If we select a sample of n individuals at random with replacement,
then the number, X, of type S individuals in the sample follows the binomial distribution with
parameters n and p.

Mean of the Binomial distribution
Let X ∼ Bin(n, p). We have

E(X) =
n∑
x=0

xP (X = x) =
n∑
x=0

x

(
n

x

)
px(1− p)n−x.

Below we prove that E(X) = np. Recall that k! = k(k − 1)! for any k > 0.

E(X) =
∑n

x=0 x
(
n
x

)
px(1− p)n−x

=
∑n

x=1 x
n!

x!(n−x)!p
x(1− p)n−x

=
∑n

x=1
n!

(x−1)!(n−x)!p
x(1− p)n−x

= np
∑n

x=1
(n−1)!

(x−1)!(n−1−x+1)!p
x−1(1− p)n−1−x+1

= np
∑n−1

y=0
(n−1)!

(y)!(n−1−y)!p
y(1− p)n−1−y

= np(p+ 1− p)n−1 = np,

where we used the substitution y = x− 1 and then the binomial theorem to conclude that the last
sum is equal to 1.

Variance of the Binomial distribution
Let X ∼ Bin(n, p). Then Var(X) = np(1−p). It is difficult to find E(X2) directly, but the factorial
structure allows us to find E[X(X − 1)]. Recall that k! = k(k − 1)(k − 2)! for any k > 1.

E[(X(X − 1)] =
∑n

x=0 x(x− 1)
(
n
x

)
px(1− p)n−x

=
∑n

x=2 x(x− 1) n!
x!(n−x)!p

x(1− p)n−x

=
∑n

x=2
n!

(x−2)!(n−x)!p
x(1− p)n−x

= n(n− 1)p2
∑n

x=2
(n−2)!

(x−2)!(n−2−x+2)!p
x−2(1− p)n−2−x+2

= n(n− 1)p2
∑n−2

y=0
(n−2)!

(y)!(n−2−y)!p
y(1− p)n−2−y

= n(n− 1)p2(p+ 1− p)n−2.

Now, E(X2) = E[X(X − 1)] + E(X) = n(n− 1)p2 + np. Hence,

Var(X) = E(X2)− (E(X))2 = n(n− 1)p2 + np− (np)2 = np(1− p).

It is illuminating to see these direct proofs. Later on we shall apply statistical theory to directly
prove these! Notice that the binomial theorem is used repeatedly to prove the results.
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3.3.4 Geometric distribution

Suppose that we have the same situation as for the binomial distribution but we consider a different
r.v. X, which is defined as the number of trials that lead to the first success. The outcomes for
this experiment are:

S X = 1, P (X = 1) = p

FS X = 2, P (X = 2) = (1− p)p
FFS X = 3, P (X = 3) = (1− p)2p

FFFS X = 4, P (X = 4) = (1− p)3p

...
...

In general we have

P (X = x) = (1− p)x−1p, x = 1, 2, . . .

This is called the geometric distribution, and it has a (countably) infinite domain starting at 1 not
0. We write X ∼Geo(p).

Let us check that the probability function has the required property:

∞∑
x=1

P (X = x) =

∞∑
x=1

(1− p)x−1p

= p
∞∑
y=0

(1− p)y [substitute y = x− 1]

= p
1

1− (1− p)
[see Section A.5]

= 1.

We can also find the probability that X > k for some given natural number k:

∞∑
x=k+1

P (X = x) =

∞∑
x=k+1

(1− p)x−1p

= p[(1− p)k+1−1 + (1− p)k+2−1 + (1− p)k+3−1 + . . .

= p(1− p)k
∞∑
y=0

(1− p)y

= (1− p)k.

Memoryless property of the geometric distribution.
Let X follow the geometric distribution and suppose that s and k are positive integers. We then
have

P (X > s+ k|X > k) = P (X > s).
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The proof is given below. In practice this means that the random variable does not remember its
age (denoted by k) to determine how long more (denoted by s) it will survive! The proof below
uses the definition of conditional probability

P{A|B} =
P{A ∩B}
P{B}

.

Now the proof,

P (X > s+ k|X > k) = P (X>s+k,X>k)
P (X>k)

= P (X>s+k)
P (X>k)

= (1−p)s+k
(1−p)k

= (1− p)s,
which does not depend on k. Note that the event X > s+ k and X > k implies and is implied by
X > s+ k since s > 0.

Mean and variance of the Geometric distribution
Let X ∼Geo(p). We can show that E(X) = p using the negative binomial series, see Section A.5,
as follows:

E(X) =
∑∞

x=1 xP (X = x)
=

∑∞
x=1 xp(1− p)x−1

= p
[
1 + 2(1− p) + 3(1− p)2 + 4(1− p)3 + . . .

]
For n > 0 and |x| < 1, the negative binomial series is given by:

(1−x)−n = 1+nx+
1

2
n(n+1)x2 +

1

6
n(n+1)(n+2)x3 + · · ·+ n(n+ 1)(n+ 2) · · · (n+ k − 1)

k!
xk+ · · ·

With n = 2 and x = 1− p the general term is given by:

n(n+ 1)(n+ 2)(n+ k − 1)

k!
=

2× 3× 4× · · · × (2 + k − 1)

k!
= k + 1.

Thus E(X) = p(1−1 +p)−2 = 1/p. It can be shown that Var(X) = (1−p)/p2 using negative bino-
mial series. But this is more complicated and is not required. The second-year module MATH2011
will provide an alternative proof.

3.3.5 Hypergeometric distribution

Suppose we have an urn (population) containing N individuals, a proportion p of which are of type
S and a proportion 1 − p of type F . If we select a sample of n individuals at random without
replacement, then the number, X, of type S individuals in the sample has the hypergeometric
distribution:

P (X = x) =

(
Np
x

)(
N(1−p)
n−x

)(
N
n

) , x = 0, 1, . . . , n,

assuming that x ≤ Np and n− x ≤ N(1− p) so that the above combinations are well defined. The
mean and variance of the hypergeometric distribution are given by

E(X) = np,Var(X) = npq
N − n
N − 1

.
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The proofs of the above results use complicated finite summation and so are omitted. But note
that when N →∞ the variance converges to the variance of the binomial distribution. Indeed, the
hypergeometric distribution is a finite population analogue of the binomial distribution.

3.3.6 Take home points

We have learned properties of the Bernoulli, Binomial, Geometric and Hypergeometric distributions.

3.4 Lecture 12: Further standard discrete distributions

3.4.1 Lecture mission

In this lecture we introduce the negative binomial distribution as a generalisation of the geometric
distribution, and the Poisson distribution.

3.4.2 Negative binomial distribution

Still in the Bernoulli trials set-up, we define the random variable X to be the total number of trials
until the r-th success occurs, where r is a given natural number. This is known as the negative
binomial distribution with parameters p and r.

[Note: if r = 1, the negative binomial distribution is just the geometric distribution.]
Firstly we need to identify the possible values of X. Possible values for X are x = r, r + 1, r +

2, . . .. Secondly, the probability mass function is given by

P (X = x) =

(
x− 1

r − 1

)
pr−1(1− p)(x−1)−(r−1) × p

=

(
x− 1

r − 1

)
pr(1− p)x−r, x = r, r + 1, . . .

♥ Example 34 In a board game that uses a single fair die, a player cannot start until they have
rolled a six. Let X be the number of rolls needed until they get a six. Then X is a Geometric
random variable with success probability p = 1/6.

♥ Example 35 A man plays roulette, betting on red each time. He decides to keep playing until
he achieves his second win. The success probability for each game is 18/37 and the results of games
are independent. Let X be the number of games played until he gets his second win. Then X is
a Negative Binomial random variable with r = 2 and p = 18/37. What is the probability he plays
more than 3 games? i.e. find P (X > 3).

Derivation of the mean and variance of the negative binomial distribution involves compli-
cated negative binomial series and will be skipped for now, but will be proved in Lecture 17. For
completeness we note down the mean and variance:

E(X) =
r

p
, Var(X) = r

1− p
p2

.
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Thus when r = 1, the mean and variance of the negative binomial distribution are equal to those
of the geometric distribution.

3.4.3 Poisson distribution

The Poisson distribution can be obtained as the limit of the binomial distribution with parameters
n and p when n → ∞ and p → 0 simultaneously, but the product λ = np remains finite. In
practice this means that the Poisson distribution counts rare events (since p → 0) in an infinite
population (since n→∞). Theoretically, a random variable following the Poisson distribution can
take any integer value from 0 to ∞. Examples of the Poisson distribution include: the number of
breast cancer patients in Southampton; the number of text messages sent (or received) per day by
a randomly selected first-year student; the number of credit cards a randomly selected person has
in their wallet.

Let us find the pmf of the Poisson distribution as the limit of the pmf of the binomial distribution.
Recall that if X ∼ Bin(n, p) then P (X = x) =

(
n
x

)
px(1− p)n−x. Now:

P (X = x) =
(
n
x

)
px(1− p)n−x

=
(
n
x

)
nn

nn p
x(1− p)n−x

= n(n−1)···(n−x+1)
nxx! (np)x (n(1− p))n−x 1

nn−x

= n
n

(n−1)
n · · · (n−x+1)

n
λx

x!

(
1− λ

n

)n−x
.

= n
n

(n−1)
n · · · (n−x+1)

n
λx

x!

(
1− λ

n

)n (
1− λ

n

)−x
.

Now it is easy to see that the above tends to

e−λ
λx

x!

as n→∞ for any fixed value of x in the range 0, 1, 2, . . .. Note that we have used the exponential
limit:

e−λ = lim
n→∞

(
1− λ

n

)n
,

and

lim
n→∞

(
1− λ

n

)−x
= 1

and

lim
n→∞

n

n

(n− 1)

n
· · · (n− x+ 1)

n
= 1.

A random variable X has the Poisson distribution with parameter λ if it has the pmf:

P (X = x) = e−λ
λx

x!
, x = 0, 1, 2, . . .

We write X ∼ Poisson(λ). It is trivial to show
∑∞

x=0 P (X = x) = 1, i.e.
∑∞

x=0 e
−λ λx

x! = 1. The
identity you need is simply the expansion of eλ.
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Mean of the Poisson distribution
Let X ∼ Poisson(λ). Then

E(X) =
∑∞

x=0 xP (X = x)

=
∑∞

x=0 xe
−λ λx

x!

= e−λ
∑∞

x=1 x
λx

x!

= e−λ
∑∞

x=1
λ·λ(x−1)

(x−1)!

= λe−λ
∑∞

x=1
λ(x−1)

(x−1)!

= λe−λ
∑∞

y=0
λy

y! [y = x− 1]

= λe−λeλ [using the expansion of eλ]
= λ.

Variance of the Poisson distribution
Let X ∼ Poisson(λ). Then

E[X(X − 1)] =
∑∞

x=0 x(x− 1)P (X = x)

=
∑∞

x=0 x(x− 1)e−λ λ
x

x!

= e−λ
∑∞

x=2 x(x− 1)λ
x

x!

= e−λ
∑∞

x=2 λ
2 λx−2

(x−2)!

= λ2e−λ
∑∞

y=0
λy

y! [y = x− 2]

= λ2e−λeλ = λ2 [using the expansion of eλ]

Now, E(X2) = E[X(X − 1)] + E(X) = λ2 + λ. Hence,

Var(X) = E(X2)− (E(X))2 = λ2 + λ− λ2 = λ.

Hence, the mean and variance are the same for the Poisson distribution.

The Poisson distribution can be derived from another consideration when we are waiting for
events to occur, e.g. waiting for a bus to arrive or to be served at a supermarket till. The number
of occurrences in a given time interval can sometimes be modelled by the Poisson distribution.
Here the assumption is that the probability of an event (arrival) is proportional to the length of the
waiting time for small time intervals. Such a process is called a Poisson process, and it can be shown
that the waiting time between successive events can be modelled by the exponential distribution
which is discussed in the next lecture.

Using R to calculate probabilities
For the Poisson distribution the command dpois(x=3, lambda=5) calculates the pmf of Poisson(λ =

5) at x = 3. That is, the command will return the value P (X = 3) = e−5 53

3! . The command ppois

returns the cdf or the probability up to and including the argument. Thus ppois(q=3, lambda=5)

will return the value of P (X ≤ 3) when X ∼ Poisson(λ = 5).

3.4.4 Take home points

In this lecture we have learned about the Negative Binomial and Poisson distributions.
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3.5 Lecture 13: Standard continuous distributions

3.5.1 Lecture mission

In this lecture we will learn about the Exponential distribution and its properties.

3.5.2 Exponential distribution

A continuous random variable X is said to follow the exponential distribution if its pdf is of the
form:

f(x) =

{
θe−θx if x > 0
0 if x ≤ 0

where θ > 0 is a parameter. We write X ∼ Exponential(θ). The distribution only resides in the
positive half of the real line, and the tail goes down to zero exponentially as x → ∞. The rate at
which that happens is the parameter θ. Hence θ is known as the rate parameter.

It is easy to prove that
∫∞

0 f(x)dx = 1. This is left as an exercise. To find the mean and
variance of the distribution we need the gamma function as discussed in Section A.7.3.

Definition: Gamma function:
For any positive number a,

Γ(a) =

∫ ∞
0

xa−1e−xdx

is defined to be the gamma function and it has a finite real value. Moreover, we have the following
facts:

Γ

(
1

2

)
=
√
π; Γ(1) = 1; Γ(a) = (a− 1)Γ(a− 1) if a > 1.

These last two facts imply that Γ(k) = (k − 1)! when k is a positive integer. Find Γ
(

3
2

)
.

Mean and variance of the exponential distribution

By definition,
E(X) =

∫∞
−∞ xf(x)dx

=
∫∞

0 xθe−θxdx

=
∫∞

0 ye−y dyθ {substitute y = θx}
= 1

θ

∫∞
0 y2−1e−ydy

= 1
θΓ(2)

= 1
θ {since Γ(2) = 1! = 1}.

Now,
E(X2) =

∫∞
−∞ x

2f(x)dx

=
∫∞

0 x2θe−θxdx

= θ
∫∞

0

(y
θ

)2
e−y dyθ {substitute y = θx}

= 1
θ2

∫∞
0 y3−1e−ydy

= 1
θ2

Γ(3)
= 2

θ2
{since Γ(3) = 2! = 2},
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and so Var(X) = E(X2)− [E(X)]2 = 2/θ2 − 1/θ2 = 1/θ2. Note that for this random variable the
mean is equal to the standard deviation.

It is easy to find the cdf of the exponential distribution. For x > 0,

F (x) = P (X ≤ x) =

∫ x

0
θe−θudu = 1− e−θx.

We have F (0) = 0 and F (x) → 1 when x → ∞ and F (x) is non-decreasing in x. The cdf can be
used to solve many problems. A few examples follow.
Using R to calculate probabilities

For the exponential distribution the command dexp(x=3, rate=1/2) calculates the pdf at
x = 3. The rate parameter to be supplied is the θ parameter here. The command pexp returns the
cdf or the probability up to and including the argument. Thus pexp(q=3, rate=1/2) will return
the value of P (X ≤ 3) when X ∼ Exponential(θ = 0.5).

♥ Example 36 Mobile phone Suppose that the lifetime of a phone (e.g. the time until the
phone does not function even after repairs), denoted by X, manufactured by the company A Pale,
is exponentially distributed with mean 550 days.

1. Find the probability that a randomly selected phone will still function after two years, i.e.
X > 730? [Assume there is no leap year in the two years].

2. What are the times by which 25%, 50%, 75% and 90% of the manufactured phones will have
failed?

Here the mean 1/θ = 550. Hence θ = 1/550 is the rate parameter. The solution to the first
problem is

P (X > 730) = 1− P (X ≤ 730) = 1− (1− e−730/550) = e−730/550 = 0.2652.

The R command to find this is 1-pexp(q=730, rate=1/550).

For the second problem we are given the probabilities of failure (0.25, 0.50 etc.). We will have
to invert the probabilities to find the value of the random variable. In other words, we will have
to find a q such that F (q) = p, where p is the given probability. For example, what value of q will
give us F (q) = 0.25, so that 25% of the phones will have failed by time q?

For a given 0 < p < 1, the pth quantile (or 100p percentile) of the random variable
X with cdf F (x) is defined to be the value q for which F (q) = p.

The 50th percentile is called the median. The 25th and 75th percentiles are called
the quartiles.

♥ Example 37 Uniform distribution Consider the uniform distribution U(a, b) in the interval
(a, b). Here F (x) = x−a

b−a . So for a given p, F (q) = p implies q = a+ p(b− a).
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For the uniform U(a, b) distribution the median is b+a
2 , and the quartiles are: b+3a

4 and 3b+a
4 .

Returning to the exponential distribution example, we have p = F (q) = 1− e−θq. Find q when
p is given.

p = 1− e−θq
⇒ e−θq = 1− p
⇒ −θq = log(1− p)
⇒ q = − log(1−p)

θ
⇒ q = −550× log(1− p).

Review the rules of log in Section A.6. Now we have the following table:

p q = −550× log(1− p)
0.25 158.22
0.50 381.23
0.75 762.46
0.90 1266.422

In R you can find these values by qexp(p=0.25, rate=1/550), qexp(p=0.50, rate=1/550), etc.
For fun, you can find qexp(p=0.99, rate=1/550) = 6 years and 343 days! The function qexp(p,

rate) calculates the 100p percentile of the exponential distribution with parameter rate.

♥ Example 38 Survival function The exponential distribution is sometimes used to model
the survival times in different experiments. For example, an exponential random variable T may
be assumed to model the number of days a cancer patient survives after chemotherapy. In such a
situation, the function S(t) = 1− F (t) = e−θt is called the survival function. See Figure 3.2 for an
example plot.

Figure 3.2: S(t) for θ = 1, 0.5, 0.2.

Assuming the mean survival time to be 100 days for a fatal late detected cancer, we can expect
that half of the patients survive 69.3 days after chemo since qexp(0.50, rate=1/100) = 69.3.
You will learn more about this in a third-year module, Math3085: Survival models, important in
actuary.
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♥ Example 39 Memoryless property Like the geometric distribution, the exponential distri-
bution also has the memoryless property. In simple terms, it means that the probability that the
system will survive an additional period s > 0 given that it has survived up to time t is the same
as the probability that the system survives the period s to begin with. That is, it forgets that it
has survived up to a particular time when it is thinking of its future remaining life time.

The proof is exactly as in the case of the geometric distribution, reproduced below. Recall the
definition of conditional probability:

P{A|B} =
P{A ∩B}
P{B}

.

Now the proof,

P (X > s+ t|X > t) = P (X>s+t,X>t)
P (X>t)

= P (X>s+t)
P (X>t)

= e−θ(s+t)

e−θt

= e−θs

= P (X > s).

Note that the event X > s+ t and X > t implies and is implied by X > s+ t since s > 0.

♥ Example 40 The time T between any two successive arrivals in a hospital emergency depart-
ment has probability density function:

f(t) =

{
λe−λt if t ≥ 0
0 otherwise.

Historically, on average the mean of these inter-arrival times is 5 minutes. Calculate (i) P (0 < T <
5), (ii) P (T < 10|T > 5).

An estimate of E(T ) is 5. As E(T ) = 1
λ we take 1

5 as the estimate of λ.

(i) P (0 < T < 5) =
∫ 5

0
1
5e
−t/5 dt = [−e−t/5]50 = 1− e−1 = 0.63212.

(ii)

P (T < 10|T > 5) =
P (5 < T < 10)

P (T > 5)

=

∫ 10
5

1
5e
−t/5 dt∫∞

5
1
5e
−t/5 dt

=
[−e−t/5]10

5

[−e−t/5]∞5

= 1− e−1 = 0.63212.

3.5.3 Take home points

In this lecture we have learned many properties of the Exponential distribution.
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3.6 Lecture 14: The normal distribution

3.6.1 Lecture mission

The normal distribution is the most commonly encountered continuous distribution in statistics
and in science in general. This lecture will be entirely devoted to learning many properties of this
distribution.

3.6.2 The pdf, mean and variance of the normal distribution

A random variable X is said to have the normal distribution with parameters µ and σ2 if it has
the following pdf:

f(x) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
,−∞ < x <∞ (3.1)

where −∞ < µ < ∞ and σ > 0 are two given constants. It is easy to see that f(x) > 0 for all x.
We will now prove that

R1
∫∞
−∞ f(x)dx = 1 or total probability equals 1, so that f(x) defines a valid pdf.

R2 E(X) = µ, i.e. the mean is µ.

R3 Var(X) = σ2, i.e. the variance is σ2.

We denote the normal distribution by the notation N(µ, σ2).

Suppose all of these hold (since they are proved below). Then it is easy to remember the pdf
of the normal distribution:

f(variable) =
1√

2π variance
exp

{
−(variable−mean)2

2 variance

}

where variable denotes the random variable. The density (pdf) is much easier to remember and
work with when the mean µ = 0 and variance σ2 = 1. In this case, we simply write:

f(x) =
1√
2π

exp

{
−x

2

2

}
or f(variable) =

1√
2π

exp

{
−variable2

2

}
.

Now let us prove the 3 assertions, R1, R2 and R3. R1 is proved as follows:∫∞
−∞ f(x)dx =

∫∞
−∞

1√
2πσ2

exp
{
− (x−µ)2

2σ2

}
dx

= 1√
2π

∫∞
−∞ exp

{
− z2

2

}
dz [substitute z = x−µ

σ so that dx = σdz]

= 1√
2π

2
∫∞

0 exp
{
− z2

2

}
dz [since the integrand is an even function]

= 1√
2π

2
∫∞

0 exp {−u} du√
2u

[substitute u = z2

2 so that z =
√

2u and dz = du√
2u

]

= 1
2
√
π

2
∫∞

0 u
1
2
−1 exp {−u} du [rearrange the terms]

= 1√
π

Γ
(

1
2

)
[recall the definition of the Gamma function]

= 1√
π

√
π = 1 [as Γ

(
1
2

)
=
√
π].
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To prove R2, i.e. E(X) = µ, we prove the following two results:

(i)X ∼ N(µ, σ2)←→ Z ≡ X − µ
σ

∼ N(0, 1) (3.2)

(ii) E(Z) = 0. (3.3)

Then by the linearity of expectations, i.e. if X = µ + σZ for constants µ and σ then E(X) =
µ+ σE(Z) = µ, the result follows. To prove (3.2), we first calculate the cdf, given by:

Φ(z) = P (Z ≤ z)

= P

(
X − µ
σ

≤ z
)

= P (X ≤ µ+ zσ)

=

∫ µ+zσ

−∞

1√
2πσ2

exp

{
−(x− µ)2

2σ2

}
dx

=

∫ z

−∞

1√
2π

exp

{
−u

2

2

}
du, [u = (x− µ)/σ]

and so the pdf of Z is

dΦ(z)

dz
=

1√
2π

exp

{
−z

2

2

}
for −∞ < z <∞,

by the fundamental theorem of calculus. This proves that Z ∼ N(0, 1). The converse is proved just
by reversing the steps. Thus we have proved (i) above. We use the Φ(·) notation to denote the cdf
of the standard normal distribution. Now:

E(Z) =
∫∞
−∞ zf(z)dz

=
∫∞
−∞ z

1√
2π

exp
{
− z2

2

}
dz

= 1√
2π
× 0 = 0,

since the integrand g(z) = z exp
{
− z2

2

}
is an odd function, i.e. g(z) = −g(−z); for an odd function

g(z),
∫ a
−a g(z)dz = 0 for any a. Therefore we have also proved (3.3) and hence R2.

To prove R3, i.e. Var(X) = σ2, we show that Var(Z) = 1 where Z = X−µ
σ and then claim

that Var(X) = σ2Var(Z) = σ2 from our earlier result. Since E(Z) = 0, Var(Z) = E(Z2), which is
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calculated below:

E(Z2) =
∫∞
−∞ z

2f(z)dz

=
∫∞
−∞ z

2 1√
2π

exp
{
− z2

2

}
dz

= 2√
2π

∫∞
0 z2 exp

{
− z2

2

}
dz [since the integrand is an even function]

= 2√
2π

∫∞
0 2u exp {−u} du√

2u
[substituted u = z2

2 so that z =
√

2u and dz = du√
2u

]

= 4
2
√
π

∫∞
0 u

1
2 exp {−u} du

= 2√
π

∫∞
0 u

3
2
−1 exp {−u} du

= 2√
π

Γ
(

3
2

)
[definition of the gamma function]

= 2√
π

(
3
2 − 1

)
Γ
(

3
2 − 1

)
[reduction property of the gamma function]

= 2√
π

1
2

√
π [since Γ

(
1
2

)
=
√
π]

= 1,

as we hoped for! This proves R3.

Linear transformation of a Normal random variable
Suppose X ∼ N(µ, σ2) and a and b are constants. Then the distribution of Y = aX + b is
N(aµ+ b, a2σ2).

Proof: The result that Y has mean aµ + b and variance a2σ2 can already be claimed from
the linearity of the expectations and the variance result for linear functions. What remains to be
proved is that the normality of Y , i.e. how can we claim that Y will follow the normal distribution
too? For this, we note that

Y = aX + b = a(µ+ σZ) + b = (aµ+ b) + aσZ

since X = µ+ σZ. Now we use (3.2) to claim the normality of Y .

3.6.3 Take home points

In this lecture we have learned the most important properties of the normal distribution.

3.7 Lecture 15: The standard normal distribution

3.7.1 Lecture mission

In this lecture we learn how to calculate probabilities under the normal distribution. We also learn
how to calculate these probabilities using R.

3.7.2 Standard normal distribution

Now we can claim that the normal pdf (3.1) is symmetric about the mean µ. The spread of the
pdf is determined by σ, the standard deviation of the distribution. When µ = 0 and σ = 1,
the normal distribution N(0, 1) is called is called the standard normal distribution. The standard
normal distribution, often denoted by Z, is used to calculate probabilities of interest for any normal
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distribution because of the following reasons. SupposeX ∼ N(µ, σ2) and we are interested in finding
P (a ≤ X ≤ b) for two constants a and b.

P (a ≤ X ≤ b) =
∫ b
a f(x)dx

=
∫ b
a

1√
2πσ2

exp
{
− (x−µ)2

2σ2

}
dx

= 1√
2π

∫ b−µ
σ

a−µ
σ

exp
{
− z2

2

}
dz [substituted z = x−µ

σ so that dx = σdz]

=
∫ b−µ

σ
−∞

1√
2π

exp
{
− z2

2

}
dz −

∫ a−µ
σ
−∞

1√
2π

exp
{
− z2

2

}
dz

= P
(
Z ≤ b−µ

σ

)
− P

(
Z ≤ a−µ

σ

)
= cdf of Z at b−µ

σ − cdf of Z at a−µ
σ

= Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

)
where we use the notation Φ(·) to denote the cdf of Z, i.e.

P (Z ≤ z) = Φ(z) =

∫ z

−∞

1√
2π

exp

{
−u

2

2

}
du.

This result allows us to find the probabilities about a normal random variable X of any mean µ and
variance σ2 through the probabilities of the standard normal random variable Z. For this reason,
only Φ(z) is tabulated. Further more, due to the symmetry of the pdf of Z, Φ(z) is tabulated only
for positive z values. Suppose a > 0, then

Φ(−a) = P (Z ≤ −a) = P (Z > a)
= 1− P (Z ≤ a)
= 1− Φ(a).

In R, we use the function pnorm to calculate the probabilities. The general function is: pnorm(q,
mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE). So, we use the command pnorm(1)

to calculate Φ(1) = P (Z ≤ 1). We can also use the command pnorm(15, mean=10, sd=2) to
calculate P (X ≤ 15) when X ∼ N(µ = 10, σ2 = 4) directly.

1. P (−1 < Z < 1) = Φ(1) − Φ(−1) = 0.6827. This means that 68.27% of the probability lies
within 1 standard deviation of the mean.

2. P (−2 < Z < 2) = Φ(2) − Φ(−2) = 0.9545. This means that 95.45% of the probability lies
within 2 standard deviations of the mean.

3. P (−3 < Z < 3) = Φ(3) − Φ(−3) = 0.9973. This means that 99.73% of the probability lies
within 3 standard deviations of the mean.

We are often interested in the quantiles (inverse-cdf of probability, Φ−1(·) of the normal distribution
for various reasons. We find the pth quantile by issuing the R command qnorm(p).

1. qnorm(0.95) = Φ−1(0.95) = 1.645. This means that the 95th percentile of the standard
normal distribution is 1.645. This also means that P (−1.645 < Z < 1.645) = Φ(1.645) −
Φ(−1.645) = 0.90.
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2. qnorm(0.975) = Φ−1(0.975) = 1.96. This means that the 97.5th percentile of the stan-
dard normal distribution is 1.96. This also means that P (−1.96 < Z < 1.96) = Φ(1.96) −
Φ(−1.96) = 0.95.

♥ Example 41 Historically, the marks in MATH1024 follow the normal distribution with mean
58 and standard deviation 32.25.

1. What percentage of students will fail (i.e. score less than 40) in MATH1024? Answer:
pnorm(40, mean=58, sd=32.25) = 28.84%.

2. What percentage of students will get an A result (score greater than 70)? Answer: 1-

pnorm(70, mean=58, sd=32.25) = 35.49%.

3. What is the probability that a randomly selected student will score more than 90? Answer:
1- pnorm(90, mean=58, sd=32.25) = 0.1605.

4. What is the probability that a randomly selected student will score less than 25? Answer:
pnorm(25, mean=58, sd=32.25) = 0.1531. Ouch!

5. What is the probability that a randomly selected student scores a 2:1, (i.e. a mark between
60 and 70)? Left as an exercise.

♥ Example 42 A lecturer set and marked an examination and found that the distribution
of marks was N(42, 142). The school’s policy is to present scaled marks whose distribution is
N(50, 152). What linear transformation should the lecturer apply to the raw marks to accomplish
this and what would the raw mark of 40 be transformed to?

Suppose X ∼ N(µx = 42, σ2
x = 142) and Y ∼ N(µy = 50, σ2

y = 152). Hence, we should have

Z =
X − µx
σx

=
Y − µy
σy

,

giving us:

Y = µy +
σy
σx

(X − µx) = 50 +
15

14
(X − 42).

Now at raw mark X = 40, the transformed mark would be:

Y = 50 +
15

14
(40− 42) = 47.86.

♥ Example 43 Log-normal distribution

If X ∼ N(µ, σ2) then the random variable Y = exp(X) is called a log-normal random variable
and its distribution is called a log-normal distribution with parameters µ and σ2.
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The mean of the random variable Y is given by

E(Y ) = E[exp(X)]

=

∫ ∞
−∞

exp(x)
1

σ
√

2π
exp

{
−(x− µ)2

2σ2

}
dx

= exp

{
−µ

2 − (µ+ σ2)2

2σ2

}∫ ∞
−∞

1

σ
√

2π
exp

{
−x

2 − 2(µ+ σ2)x+ (µ+ σ2)2

2σ2

}
dx

= exp

{
−µ

2 − (µ+ σ2)2

2σ2

}
[integrating a N(µ+ σ2, σ2) r.v. over its domain]

= exp
{
µ+ σ2/2

}

Similarly, one can show that

E(Y 2) = E[exp(2X)]

=

∫ ∞
−∞

exp(2x)
1

σ
√

2π
exp

{
−(x− µ)2

2σ2

}
dx

= · · ·
= exp

{
2µ+ 2σ2

}
.

Hence, the variance is given by

Var(Y ) = E(Y 2)− (E(Y ))2 = exp
{

2µ+ 2σ2
}
− exp

{
2µ+ σ2

}
.

3.7.3 Take home points

In this lecture we have learned more properties of the normal distribution. These properties will be
required for calculating probabilities and making inference. We have also introduced the log-normal
distribution which is often used in practice for modelling economic variables of interest in business
and finance, e.g. volume of sales, income of individuals. You do not need to remember the mean
and variance of the log-normal distribution.

3.8 Lecture 16: Joint distributions

3.8.1 Lecture mission

Often we need to study more than one random variable, e.g. height and weight, simultaneously,
so that we can exploit the relationship between them to make inferences about their properties.
Multiple random variables are studied through their joint probability distribution. In this lecture
we will study covariance and correlation and then discuss when random variables are independent.
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3.8.2 Joint distribution of discrete random variables

If X and Y are discrete, the quantity f(x, y) = P (X = x ∩ Y = y) is called the joint probability
mass function (joint pmf) of X and Y . To be a joint pmf, f(x, y) needs to satisfy two conditions:

(i) f(x, y) ≥ 0

for all x and y and

(ii)
∑

All x

∑
All y

f(x, y) = 1.

The marginal probability mass functions (marginal pmf’s) of X and Y are respectively

fX(x) =
∑
y

f(x, y), fY (y) =
∑
x

f(x, y).

Use the identity
∑

x

∑
y f(x, y) = 1 to prove that fX(x) and fY (y) are really pmf’s.

♥ Example 44 Suppose that two fair dice are tossed independently one after the other. Let

X =


−1 if the result from die 1 is larger
0 if the results are equal
1 if the result from die 1 is smaller.

Let Y = |difference between the two dice|. There are 36 possible outcomes. Each of them gives
a pair of values of X and Y . Y can take any of the values 0, 1, 2, 3, 4, 5. Construct the joint
probability table for X and Y .

Results x y Results x y Results x y

1 1 0 0 3 1 –1 2 5 1 –1 4
1 2 1 1 3 2 –1 1 5 2 –1 3
1 3 1 2 3 3 0 0 5 3 –1 2
1 4 1 3 3 4 1 1 5 4 –1 1
1 5 1 4 3 5 1 2 5 5 0 0
1 6 1 5 3 6 1 3 5 6 1 1
2 1 –1 1 4 1 –1 3 6 1 –1 5
2 2 0 0 4 2 –1 2 6 2 –1 4
2 3 1 1 4 3 –1 1 6 3 –1 3
2 4 1 2 4 4 0 0 6 4 –1 2
2 5 1 3 4 5 1 1 6 5 –1 1
2 6 1 4 4 6 1 2 6 6 0 0

Each pair of results above (and hence pair of values of X and Y ) has the same probability 1/36.
Hence the joint probability table is given in Table 3.1

The marginal probability distributions are just the row totals or column totals depending on
whether you want the marginal distribution of X or Y . For example, the marginal distribution of
X is given in Table 3.2.
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Table 3.1: Joint probability distribution of X and Y

y

0 1 2 3 4 5 Total

−1 0 5
36

4
36

3
36

2
36

1
36

15
36x

0 6
36 0 0 0 0 0 6

36

1 0 5
36

4
36

3
36

2
36

1
36

15
36

Total 6
36

10
36

8
36

6
36

4
36

2
36 1

Table 3.2: Marginal probability distribution of X.
x P (X = x)

–1 15
36

0 6
36

1 15
36

Total 1

Exercises: Write down the marginal distribution of Y and hence find the mean and variance of
Y .

Bivariate continuous distributions
If X and Y are continuous, a non-negative real-valued function f(x, y) is called the joint prob-

ability density function (joint pdf) of X and Y if∫ ∞
−∞

∫ ∞
−∞

f(x, y)dxdy = 1.

The marginal pdf’s of X and Y are respectively

fX(x) =

∫ ∞
−∞

f(x, y)dy, fY (y) =

∫ ∞
−∞

f(x, y)dx.

♥ Example 45 Define a joint pdf by

f(x, y) =

{
6xy2 if 0 < x < 1 and 0 < y < 1

0 otherwise.

How can we show that the above is a pdf? It is non-negative for all x and y values. But does it

integrate to 1? We are going to use the following rule.

Result Suppose that a real-valued function f(x, y) is continuous in a region D where a < x < b
and c < y < d, then ∫ ∫

D
f(x, y)dxdy =

∫ d

c
dy

∫ b

a
f(x, y)dx.
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Here a and b may depend upon y but c and d should be free of x and y. When we evaluate the
inner integral

∫ b
a f(x, y)dx, we treat y as constant.

Notes: To evaluate a bivariate integral over a region A we:

• Draw a picture of A whenever possible.

• Rewrite the region A as an intersection of two one-dimensional intervals. The first interval is
obtained by treating one variable as constant.

• Perform two one-dimensional integrals.

♥ Example 46 Continued∫ 1
0

∫ 1
0 f(x, y)dxdy =

∫ 1
0

∫ 1
0 6xy2 dxdy

= 6
∫ 1

0 y
2dy

∫ 1
0 x dx

= 3
∫ 1

0 y
2dy [as

∫ 1
0 x dx = 1

2 ]

= 1. [as
∫ 1

0 y
2 dy = 1

3 ]

Now we can find the marginal pdf’s as well.

fX(x) = 2x, 0 < x < 1 and fY (y) = 3y2, 0 < y < 1.

The probability of any event in the two-dimensional space can be found by integration and again

more details will be provided in a second-year module. You will come across multivariate integrals
in a second semester module. You will not be asked to do bivariate integration in this
module.

3.8.3 Covariance and correlation

We first define the expectation of a real-valued scalar function g(X,Y ) of X and Y :

E[g(X,Y )] =

{ ∑
x

∑
y g(x, y)f(x, y) if X and Y are discrete∫∞

−∞
∫∞
−∞ g(x, y)f(x, y)dxdy if X and Y are continuous.

♥ Example 47 Example 44 continued Let g(x, y) = xy.

E(XY ) = (−1)(0)0 + (−1)(1)
5

36
+ · · ·+ (1)(5)

1

36
= 0.

Exercises: Try g(x, y) = x. It will be the same thing as E(X) =
∑

x xfX(x).

We will not consider any continuous examples as the second-year module MATH2011 will study
them in detail.

Suppose that two random variables X and Y have joint pmf or pdf f(x, y) and let E(X) = µx
and E(Y ) = µy. The covariance between X and Y is defined by
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Cov(X,Y ) = E [(X − µx)(Y − µy)] = E(XY )−µxµy.

Let σ2
x = Var(X) = E(X2) − µ2

x and σ2
y = Var(Y ) = E(Y 2) − µ2

y. The correlation coefficient
between X and Y is defined by:

Corr(X,Y ) =
Cov(X,Y )√

Var(X) Var(Y )
=
E(XY )− µxµy

σx σy
.

It can be proved that for any two random variables, −1 ≤ Corr(X,Y ) ≤ 1. The correlation
Corr(X,Y ) is a measure of linear dependency between two random variables X and Y , and it is
free of the measuring units of X and Y as the units cancel in the ratio.

3.8.4 Independence

Independence is an important concept. Recall that we say two events A and B are independent if
P (A∩B) = P (A)×P (B). We use the same idea here. Two random variables X and Y having the
joint pdf or pmf f(x, y) are said to be independent if and only if

f(x, y) = fX(x)× fY (y) for ALL x and y.

♥ Example 48 Discrete Case X and Y are independent if each cell probability, f(x, y), is the
product of the corresponding row and column totals. In our very first dice example (Example 44)
X and Y are not independent. Verify that in the following example X and Y are independent. We
need to check all 9 cells.

y
1 2 3 Total

0 1
6

1
12

1
12

1
3x

1 1
4

1
8

1
8

1
2

2 1
12

1
24

1
24

1
6

Total 1
2

1
4

1
4 1

♥ Example 49 Let f(x, y) = 6xy2, 0 < x < 1, 0 < y < 1. Check that X and Y are independent.

♥ Example 50 Let f(x, y) = 2x, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Check that X and Y are independent.

♥ Example 51 Deceptive
The joint pdf may look like something you can factorise. But X and Y may not be independent

because they may be related in the domain.
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1. f(x, y) = 21
4 x

2y, x2 ≤ y ≤ 1. Not independent!

2. f(x, y) = e−y, 0 < x < y <∞. Not independent!

Consequences of Independence

• Suppose that X and Y are independent random variables. Then

P (X ∈ A, Y ∈ B) = P (X ∈ A)× P (Y ∈ B)

for any events A and B. That is, the joint probability can be obtained as the product of the
marginal probabilities. We will use this result in the next lecture. For example, suppose Jack
and Jess are two randomly selected students. Let X denote the height of Jack and Y denote
the height of Jess. Then we have,

P (X < 182 and Y > 165) = P (X < 182)× P (Y > 165).

Obviously this has to be true for any numbers other than the example numbers 182 and 165,
and for any inequalities.

• Further, let g(x) be a function of x only and h(y) be a function of y only. Then, if X and Y
are independent, it is easy to prove that

E[g(X)h(Y )] = E[g(X)]× E[h(Y )].

As a special case, let g(x) = x and h(y) = y. Then we have

E(XY ) = E(X)× E(Y ).

Consequently, for independent random variables X and Y , Cov(X,Y ) = 0 and Corr(X,Y ) =
0. But the converse is not true in general. That is, merely having Corr(X,Y ) = 0 does not
imply that X and Y are independent random variables.

3.8.5 Take home points

We have discussed the joint distribution of two random variables. The discrete case is easy to
conceptualise and analyse. The discussion of the continuous case requires bivariate integration and
hence is postponed to the second year. We have also introduced covariance and correlation. We
have the very important result that if two random variables are independent, their joint probability
distribution factorises and their correlation is 0.

3.9 Lecture 17: Properties of the sample sum and mean

3.9.1 Lecture mission

In this lecture we consider sums of random variables, which arise frequently in both practice and
theoretical results. For example, the mark achieved in an exam is the sum of the marks for each
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question, and the sample mean is proportional to the sum of the sample values. By doing this, in
the next lecture we will introduce the widely-used central limit theorem, the normal approximation
to the binomial distribution and so on. In this lecture we will also use this theory to reproduce
some of the results we obtained before, e.g. finding the mean and variance of the binomial and
negative binomial distributions.

3.9.2 Introduction

Suppose we have obtained a random sample from a distribution with pmf or pdf f(x), so that
X can either be a discrete or a continuous random variable. We will learn more about random
sampling in the next chapter. Let X1, . . . , Xn denote the random sample of size n where n is a
positive integer. We use upper case letters since each member of the random sample is a random
variable. For example, I toss a fair coin n times and let Xi take the value 1 if a head appears in the
ith trial and 0 otherwise. Now I have a random sample X1, . . . , Xn from the Bernoulli distribution
with probability of success equal to 0.5 since the coin is assumed to be fair.

We can get a random sample from a continuous random variable as well. Suppose it is known
that the distribution of the heights of first-year students is normal with mean 175 centimetres and
standard deviation 8 centimetres. I can randomly select a number of first-year students and record
each student’s height.

Suppose X1, . . . , Xn is a random sample from a population with distribution f(x). Then it can
be shown that the random variables X1, . . . , Xn are mutually independent, i.e.

P (X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An) = P (X1 ∈ A1)× P (X2 ∈ A2)× · · ·P (Xn ∈ An)

for any set of events, A1, A2, . . . An. That is, the joint probability can be obtained as the product
of individual probabilities. An example of this for n = 2 was given in the previous lecture; see the
discussion just below the paragraph Consequences of independence.

♥ Example 52 Distribution of the sum of independent binomial random variables
Suppose X ∼ Bin(m, p) and Y ∼ Bin(n, p) independently. Note that p is the same in both distri-
butions. Using the above fact that joint probability is the multiplication of individual probabilities,
we can conclude that Z = X + Y has the binomial distribution. It is intuitively clear that this
should happen since X comes from m Bernoulli trials and Y comes from n Bernoulli trials indepen-
dently, so Z comes from m+ n Bernoulli trials with common success probability p. We can prove
the result mathematically as well, by finding the probability mass function of Z = X + Y directly
and observing that it is of the appropriate form. First, note that

P (Z = z) = P (X = x, Y = y)

subject to the constraint that x+ y = z, 0 ≤ x ≤ m, 0 ≤ y ≤ n. Thus,

P (Z = z) =
∑

x+y=z P (X = x, Y = y)

=
∑

x+y=z

(
m
x

)
px(1− p)m−x

(
n
y

)
py(1− p)n−y

=
∑

x+y=z

(
m
x

)(
n
y

)
pz(1− p)m+n−z

= pz(1− p)m+n−z∑
x+y=z

(
m
x

)(
n
y

)
=

(
m+n
z

)
pz(1− p)m+n−z,
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using a result stated in Section A.4. Thus, we have proved that the sum of independent binomial
random variables with common probability is binomial as well. This is called the reproductive
property of random variables. You are asked to prove this for the Poisson distribution in an
exercise sheet.

Now we will state two main results without proof. The proofs will presented in the second-
year distribution theory module MATH2011. Suppose that X1, . . . , Xn is a random sample from
a population distribution with finite variance, and suppose that E(Xi) = µi and Var(Xi) = σ2

i .
Define a new random variable

Y = a1X1 + a2X2 + · · ·+ anXn

where a1, a2, . . . , an are constants. Then:

1. E(Y ) = a1µ1 + a2µ2 + · · ·+ anµn.

2. Var(Y ) = a2
1σ

2
1 + a2

2σ
2
2 + · · ·+ a2

nσ
2
n.

For example, if ai = 1 for all i = 1, . . . , n, the two results above imply that:

The expectation of the sum of independent random variables is the sum of the expectations
of the individual random variables

and

the variance of the sum of independent random variables is the sum of the variances of
the individual random variables.

The second result is only true for independent random variables, e.g. random samples. Now we
will consider many examples.

♥ Example 53 Mean and variance of binomial distribution
Suppose Y ∼ Bin(n, p). Then we can write:

Y = X1 +X2 + . . .+Xn

where each Xi is an independent Bernoulli trial with success probability p. We have shown before
that, E(Xi) = p and Var(Xi) = p(1 − p) by direct calculation. Now the above two results imply
that:

E(Y ) = E

(
n∑
i=1

Xi

)
= p+ p+ . . .+ p = np.

Var(Y ) = Var(X1) + · · ·+ Var(Xn) = p(1− p) + . . .+ p(1− p) = np(1− p).

Thus we avoided the complicated sums used to derive E(X) and Var(X) in Section 3.3.3.

♥ Example 54 Mean and variance of negative binomial distribution
Recall that the negative binomial random variable Y is the number of trials needed to obtain the
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r-th success in a sequence of independent Bernoulli trials, each with success probability p. Let Xi

be the number of trials needed after the (i− 1)-th success to obtain the i-th success. It is easy to
see that each Xi is a geometric random variable and Y = X1 + · · ·+Xr. Hence,

E(Y ) = E(X1) + · · ·+ E(Xr) = 1/p+ · · ·+ 1/p = r/p

and

Var(Y ) = Var(X1) + · · ·+ Var(Xr) = (1− p)/p2 + · · ·+ (1− p)/p2 = r(1− p)/p2.

♥ Example 55 Sum of independent Normal random variables
Suppose that Xi ∼ N(µi, σ

2
i ), i = 1, 2, . . . , k are independent random variables. Let a1, a2, . . . , ak

be constants and suppose that

Y = a1X1 + · · ·+ akXk.

Then we can prove that:

Y ∼ N

(
k∑
i=1

aiµi,
k∑
i=1

a2
iσ

2
i

)
.

It is clear that E(Y ) =
∑k

i=1 aiµi and Var(Y ) =
∑k

i=1 a
2
iσ

2
i . But that Y has the normal

distribution cannot yet be proved with the theory we know. This proof will be provided in the
second-year distribution theory module MATH2011.

As a consequence of the stated result we can easily see the following. Suppose X1 and X2 are
independent N(µ, σ2) random variables. Then 2X1 ∼ N(2µ, 4σ2), X1 + X2 ∼ N(2µ, 2σ2), and
X1 −X2 ∼ N(0, 2σ2). Note that 2X1 and X1 +X2 have different distributions.

Suppose that Xi ∼ N(µ, σ2), i = 1, . . . , n are independent. Then

X1 + · · ·+Xn ∼ N(nµ, nσ2),

and consequently,

X̄ =
1

n
(X1 + · · ·+Xn) ∼ N

(
µ,
σ2

n

)
.

3.9.3 Take home points

In this lecture we learned that the sample sum or the mean are random variables in their own right.
Also, we have obtained the distribution of the sample sum for the binomial random variable. We
have stated two important results regarding the mean and variance of the sample sum. Moreover,
we have stated without proof that the distribution of the sample mean is normal if the samples
are from the normal distribution itself. This is also an example of the reproductive property of
the distributions. You will learn more about this in the second-year module MATH2011. In this
module, we will use these facts to introduce the central limit theorem – perhaps the most widely-
used result in statistics.
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3.10 Lecture 18: The Central Limit Theorem

3.10.1 Lecture mission

The sum (and average) of independent random variables show a remarkable behaviour in practice
which is captured by the Central Limit Theorem (CLT). These random variables do not even have
to be continuous, all we require is that they are independent and each of them has a finite mean
and a finite variance. A version of the CLT follows.

3.10.2 Statement of the Central Limit Theorem (CLT)

Let X1, . . . , Xn be independent random variables with finite E(Xi) = µi and finite Var(Xi) = σ2
i .

Define Y =
∑n

i=1Xi. Then, for a sufficiently large n, the central limit theorem states that Y is
approximately normally distributed with

E(Y ) =
n∑
i=1

µi, Var(Y ) =
n∑
i=1

σ2
i .

This also implies that X̄ = 1
nY also follows the normal distribution approximately, as the sample

size n → ∞. In particular, if µi = µ and σ2
i = σ2, i.e. all means are equal and all variances are

equal, then the CLT states that, as n→∞,

X̄ ∼ N
(
µ,
σ2

n

)
.

Equivalently, √
n(X̄ − µ)

σ
∼ N (0, 1)

as n→∞. The notion of convergence is explained by the convergence of distribution of X̄ to that
of the normal distribution with the appropriate mean and variance. It means that the cdf of the

left hand side,
√
n (X̄−µ)

σ , converges to the cdf of the standard normal random variable, Φ(·). In
other words,

lim
n→∞

P

(√
n

(X̄ − µ)

σ
≤ z
)

= Φ(z), −∞ < z <∞.

So for “large samples”, we can use N(0, 1) as an approximation to the sampling distribution of√
n(X̄ − µ)/σ. This result is ‘exact’, i.e. no approximation is required, if the distribution of the

Xi’s are normal in the first place – this was discussed in the previous lecture.

How large does n have to be before this approximation becomes usable? There is no definitive
answer to this, as it depends on how “close to normal” the distribution of X is. However, it is
often a pretty good approximation for sample sizes as small as 20, or even smaller. It also depends
on the skewness of the distribution of X; if the X-variables are highly skewed, then n will usually
need to be larger than for corresponding symmetric X-variables for the approximation to be good.
We will investigate this numerically using R.
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Figure 3.3: Distribution of normalised sample means for samples of different sizes. Initially very
skew (original distribution, n = 1) becoming rapidly closer to standard normal (dashed line) with
increasing n.

3.10.3 Application of CLT to binomial distribution

We know that a binomial random variable Y with parameters n and p is the number of successes
in a set of n independent Bernoulli trials, each with success probability p. We have also learnt that

Y = X1 +X2 + · · ·+Xn,

where X1, . . . , Xn are independent Bernoulli random variables with success probability p. It fol-
lows from the CLT that, for a sufficiently large n, Y is approximately normally distributed with
expectation E(Y ) = np and variance Var(Y ) = np(1− p).

Hence, for given integers y1 and y2 between 0 and n and a suitably large n, we have

P (y1 ≤ Y ≤ y2) = P

{
y1 − np√
np(1− p)

≤ Y − np√
np(1− p)

≤ y2 − np√
np(1− p)

}

≈ P

{
y1 − np√
np(1− p)

≤ Z ≤ y2 − np√
np(1− p)

}
,

where Z ∼ N(0, 1).

We should take account of the fact that the binomial random variable Y is integer-valued, and
so P (y1 ≤ Y ≤ y2) = P (y1 − f1 ≤ Y ≤ y2 + f2) for any two fractions 0 < f1, f2 < 1. This is called
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Figure 3.4: Histograms of normalised sample means for Bernoulli (p = 0.8) samples of different
sizes. – converging to standard normal.

continuity correction and we take f1 = f2 = 0.5 in practice.

P (y1 ≤ Y ≤ y2) = P (y1 − 0.5 ≤ Y ≤ y2 + 0.5)

= P

{
y1 − 0.5− np√

np(1− p)
≤ Y − np√

np(1− p)
≤ y2 + 0.5− np√

np(1− p)

}

≈ P

{
y1 − 0.5− np√

np(1− p)
≤ Z ≤ y2 + 0.5− np√

np(1− p)

}
.

What do we mean by a suitably large n? A commonly-used guideline is that the approximation
is adequate if np ≥ 5 and n(1− p) ≥ 5.

♥ Example 56 A producer of natural yoghurt believed that the market share of their brand
was 10%. To investigate this, a survey of 2500 yoghurt consumers was carried out. It was observed
that only 205 of the people surveyed expressed a preference for their brand. Should the producer
be concerned that they might be losing market share?

Assume that the conjecture about market share is true. Then the number of people Y who
prefer this product follows a binomial distribution with p = 0.1 and n = 2500. So the mean is
np = 250, the variance is np(1− p) = 225, and the standard deviation is 15. The exact probability
of observing (Y ≤ 205) is given by the sum of the binomial probabilities up to and including 205,
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which is difficult to compute. However, this can be approximated by using the CLT:

P (Y ≤ 205) = P (Y ≤ 205.5)

= P

{
Y − np√
np(1− p)

≤ 205.5− np√
np(1− p)

}

≈ P

{
Z ≤ 205.5− np√

np(1− p)

}

= P

{
Z ≤ 205.5− 250

15

}
= Φ(−2.967) = 0.0015.

This probability is so small that it casts doubt on the validity of the assumption that the market
share is 10%.

3.10.4 Take home points

In this lecture we have learned about the central limit theorem. This basically states that the
sampling distribution of the sample sum (and also the mean) is an approximate normal distribution
regardless of the probability distribution of the original random variables, provided that those
random variables have finite means and variances.
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Chapter 4

Statistical Inference

Chapter mission

In the last chapter we learned the probability distributions of common random variables that we use
in practice. We learned how to calculate the probabilities based on our assumption of a probability
distribution with known parameter values. Statistical inference is the process by which we try to
learn about those probability distributions using only random observations. Hence, if our aim is
to learn about some typical characteristics of the population of Southampton students, we simply
randomly select few students, observe their characteristics and then try to generalise, as discussed
in Lecture 1. For example, suppose we are interested in learning what proportion of Southampton
students are of Indian origin. We may then select a number of students at random and observe
the sample proportion of Indian origin students. We will then claim that the sample proportion is
really our guess for the population proportion. But obviously we may be making grave errors since
we are inferring about some unknown based on only a tiny fraction of total information. Statistical
inference methods formalise these aspects. We will learn some of these methods here.

4.1 Lecture 19: Foundations of statistical inference

Statistical analysis (or inference) involves drawing conclusions, and making predictions and deci-
sions, using the evidence provided to us by observed data. To do this we use probability distri-
butions, often called statistical models, to describe the process by which the observed data were
generated. For example, we may suppose that the true proportion of Indian origin students is p,
0 < p < 1, and if we have selected n students at random, that each of those students gives rise to a
Bernoulli distribution which takes the value 1 if the student is of Indian origin and 0 otherwise. The
success probability of the Bernoulli distribution will be the unknown p. The underlying statistical
model is then the Bernoulli distribution.

To illustrate with another example, suppose we have observed fast food waiting times in the
morning and afternoon. If we assume time (number of whole seconds) to be discrete, then a
suitable model for the random variable X = “the number of seconds waited” would be the Poisson
distribution. However, if we treat time as continuous then the random variable X = “the waiting
time” could be modelled as a normal random variable. Now, in general, it is clear that:

81
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• The form of the assumed model helps us to understand the real-world process by which the
data were generated.

• If the model explains the observed data well, then it should also inform us about future
(or unobserved) data, and hence help us to make predictions (and decisions contingent on
unobserved data).

• The use of statistical models, together with a carefully constructed methodology for their
analysis, also allows us to quantify the uncertainty associated with any conclusions, predic-
tions or decisions we make.

As we have noted in Lecture 2, we will use the notation x1, x2, . . . , xn to denote n observations
of the random variables X1, X2, . . . , Xn (corresponding capital letters). For the fast food waiting
time example, we have n = 20, x1 = 38, x2 = 100, . . . , x20 = 70, and Xi is the waiting time for the
ith person in the sample.

4.1.1 Statistical models

Suppose we denote the complete data by the vector x = (x1, x2, . . . , xn) and use X = (X1, X2, . . . , Xn)
for the corresponding random variables. A statistical model specifies a probability distribution for
the random variables X corresponding to the data observations x. Providing a specification for
the distribution of n jointly varying random variables can be a daunting task, particularly if n is
large. However, this task is made much easier if we can make some simplifying assumptions, such
as

1. X1, X2, . . . , Xn are independent random variables,

2. X1, X2, . . . , Xn have the same probability distribution (so x1, x2, . . . , xn are observations of a
single random variable X).

Assumption 1 depends on the sampling mechanism and is very common in practice. If we are
to make this assumption for the Southampton student sampling experiment, we need to select
randomly among all possible students. We should not get the sample from an event in the Indian
or Chinese Student Association as that will give us a biased result. The assumption will be vio-
lated when samples are correlated either in time or in space, e.g. the daily air pollution level in
Southampton for the last year or the air pollution levels in two nearby locations in Southampton.
In this module we will only consider data sets where Assumption 1 is valid. Assumption 2 is not
always appropriate, but is often reasonable when we are modelling a single variable. In the fast
food waiting time example, if we assume that there are no differences between the AM and PM
waiting times, then we can say that X1, . . . , X20 are independent and identically distributed (or
i.i.d. for short).

4.1.2 A fully specified model

Sometimes a model completely specifies the probability distribution of X1, X2, . . . , Xn. For exam-
ple, if we assume that the waiting time X ∼ N(µ, σ2) where µ = 100, and σ2 = 100, then this
is a fully specified model. In this case, there is no need to collect any data as there is no need
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to make any inference about any unknown quantities, although we may use the data to judge the
plausibility of the model.

However, a fully specified model would be appropriate when for example, there is some external
(to the data) theory as to why the model (in particular the values of µ and σ2) was appropriate.
Fully specified models such as this are uncommon as we rarely have external theory which allows
us to specify a model so precisely.

4.1.3 A parametric statistical model

A parametric statistical model specifies a probability distribution for a random sample apart from
the value of a number of parameters in that distribution. This could be confusing in the first
instance - a parametric model does not specify parameters! Here the word parametric signifies the
fact that the probability distribution is completely specified by a few parameters in the first place.
For example, the Poisson distribution is parameterised by the parameter λ which happens to be the
mean of the distribution; the normal distribution is parameterised by two parameters, the mean µ
and the variance σ2.

When a parametric statistical model is assumed with some unknown parameters, statistical
inference methods use data to estimate the unknown parameters, e.g. λ, µ, σ2. Estimation will be
discussed in more detail in the following lectures.

4.1.4 A nonparametric statistical model

Sometimes it is not appropriate, or we want to avoid, making a precise specification for the dis-
tribution which generated X1, X2, . . . , Xn. For example, when the data histogram does not show
a bell-shaped distribution, it would be wrong to assume a normal distribution for the data. In
such a case, although we can attempt to use some other non-bell-shaped parametric model, we can
decide altogether to abandon parametric models. We may then still assume that X1, X2, . . . , Xn

are i.i.d. random variables, but from a nonparametric statistical model which cannot be written
down, having a probability function which only depends on a finite number of parameters. Such
analysis approaches are also called distribution-free methods.

♥ Example 57 Return to the computer failure example

Let X denote the count of computer failures per week. We want to estimate how often will the
computer system fail at least once per week in the next year? The answer is 52× (1− P (X = 0)).
But how would you estimate P (X = 0)? Consider two approaches.

1. Nonparametric. Estimate P (X = 0) by the relative frequency of number of zeros in the
above sample, which is 12 out of 104. Thus our estimate of P (X = 0) is 12/104. Hence,
our estimate of the number of weeks when there will be at least one computer failure is
52× (1− 12/104) = 46.

2. Parametric. Suppose we assume that X follows the Poisson distribution with parameter λ.
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Then the answer to the above question is

52× (1− P (X = 0)) = 52×
(

1− e−λ λ00!

)
= 52×

(
1− e−λ

)
which involves the unknown parameter λ. For the Poisson distribution we know that E(X) =
λ. Hence we could use the sample mean X̄ to estimate E(X) = λ. Thus our estimate
λ̂ = x̄ = 3.75. This type of estimator is called a moment estimator. Now our answer is
52 ×

(
1− e−3.75

)
=52 * (1- exp(-3.75)) = 50.78 ≈ 51, which is very different compared

to our answer of 46 from the nonparametric approach.

4.1.5 Should we prefer parametric or nonparametric and why?

The parametric approach should be preferred if the assumption of the Poisson distribution can
be justified for the data. For example, we can look at the data histogram or compare the fitted

probabilities of different values of X, i.e. P̂ (X = x) = e−λ̂ λ̂
x

x! , with the relative frequencies from the
sample. In general, often model-based analysis is preferred because it is more precise and accurate,
and we can find estimates of uncertainty in such analysis based on the structure of the model. We
shall see this later.

The nonparametric approach should be preferred if the model cannot be justified for the data,
as in this case the parametric approach will provide incorrect answers.

4.1.6 Take home points

We have discussed the foundations of statistical inference through many examples. We have also
discussed two broad approaches for making statistical inference: parametric and nonparametric.

4.2 Lecture 20: Estimation

4.2.1 Lecture mission

Once we have collected data and proposed a statistical model for our data, the initial statistical
analysis usually involves estimation.

• For a parametric model, we need to estimate the unknown (unspecified) parameter λ. For
example, if our model for the computer failure data is that they are i.i.d. Poisson, we need to
estimate the mean (λ) of the Poisson distribution.

• For a nonparametric model, we may want to estimate the properties of the data-generating
distribution. For example, if our model for the computer failure data is that they are i.i.d.,
following the distribution of an unspecified common random variable X, then we may want
to estimate µ = E(X) or σ2 = Var(X).

In the following, we use the generic notation θ to denote the estimand (what we want to estimate
or the parameter). For example, θ is the parameter λ in the first example, and θ may be either µ
or σ2 or both in the second example.
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4.2.2 Population and sample

Recall that a statistical model specifies a probability distribution for the random variables X
corresponding to the data observations x.

• The observations x = (x1, . . . , xn) are called the sample, and quantities derived from the
sample are sample quantities. For example, as in Chapter 1, we call

x̄ =
1

n

n∑
i=1

xi

the sample mean.

• The probability distribution for X specified in our model represents all possible observations
which might have been observed in our sample, and is therefore sometimes referred to as the
population. Quantities derived from this distribution are population quantities.

For example, if our model is that X1, . . . , Xn are i.i.d., following the common distribution of
a random variable X, then we call E(X) the population mean.

4.2.3 Statistic and estimator

A statistic T (x) is any function of the observed data x1, . . . , xn alone (and therefore does not depend
on any parameters or other unknowns).

An estimate of θ is any statistic which is used to estimate θ under a particular statistical model.
We will use θ̃(x) (sometimes shortened to θ̃) to denote an estimate of θ.

An estimate θ̃(x) is an observation of a corresponding random variable θ̃(X) which is called an
estimator. Thus an estimate is a particular observed value, e.g. 1.2, but an estimator is a random
variable which can take values which are called estimates.

An estimate is a particular numerical value, e.g. x̄; an estimator is a
random variable, e.g. X̄.

The probability distribution of any estimator θ̃(X) is called its sampling distribution. The
estimate θ̃(x) is an observed value (a number), and is a single observation from the sampling dis-
tribution of θ̃(X).

♥ Example 58 Suppose that we have a random sample X1, . . . , Xn from the uniform distribu-
tion on the interval [0, θ] where θ > 0 is unknown. Suppose that n = 5 and we have the sample
observations x1 = 2.3, x2 = 3.6, x3 = 20.2, x4 = 0.9, x5 = 17.2. Our objective is to estimate θ. How
can we proceed?

Here the pdf f(x) = 1
θ for 0 ≤ x ≤ θ and 0 otherwise. Hence E(X) =

∫ θ
0

1
θxdx = θ

2 . There are

many possible estimators for θ, e.g. θ̂1(X) = 2 X̄, which is motivated by the method of moments
because θ = 2E(X). A second estimator is θ̂2(X) = max{X1, X2, . . . , Xn}, which is intuitive since
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θ must be greater than or equal to all observed values and thus the maximum of the sample value
will be closest to θ. This is also the maximum likelihood estimate of θ, which you will learn in
MATH3044.

How could we choose between the two estimators θ̂1 and θ̂2? This is where we need to learn the
sampling distribution of an estimator to determine which estimator will be unbiased, i.e. correct on
average, and which will have minimum variability. We will formally define these in a minute, but
first let us derive the sampling distribution, i.e. the pdf, of θ̂2. Note that θ̂2 is a random variable
since the sample X1, . . . , Xn is random. We will first find its cdf and then differentiate the cdf to
get the pdf. For ease of notation, suppose Y = θ̂2(X) = max{X1, X2, . . . , Xn}. For any 0 < y < θ,
the cdf of Y , F (y) is given by:

P (Y ≤ y) = P (max{X1, X2, . . . , Xn} ≤ y)
= P (X1 ≤ y,X2 ≤ y, . . . , Xn ≤ y)) [max ≤ y if and only if each ≤ y]
= P (X1 ≤ y)P (X2 ≤ y) · · ·P (Xn ≤ y) [since the X’s are independent]
= y

θ
y
θ · · ·

y
θ

=
(y
θ

)n
.

Now the pdf of Y is f(y) = dF (y)
dy = ny

n−1

θn for 0 ≤ y ≤ θ. We can plot this as a function of y to

see the pdf. Now E(θ̂2) = E(Y ) = n
n+1θ and Var(θ̂2) = nθ2

(n+2)(n+1)2
. You can prove this by easy

integration.

4.2.4 Bias and mean square error

In the uniform distribution example we saw that the estimator θ̂2 = Y = max{X1, X2, . . . , Xn} is

a random variable and its pdf is given by f(y) = ny
n−1

θn for 0 ≤ y ≤ θ. This probability distribution

is called the sampling distribution of θ̂2. For this we have seen that E(θ̂2) = n
n+1θ.

In general, we define the bias of an estimator θ̃(X) of θ to be

bias(θ̃) = E(θ̃)− θ.

An estimator θ̃(X) is said to be unbiased if

bias(θ̃) = 0, i.e. if E(θ̃) = θ.

So an estimator is unbiased if the expectation of its sampling distribution is equal to the quantity
we are trying to estimate. Unbiased means “getting it right on average”, i.e. under repeated sam-
pling (relative frequency interpretation of probability).

Thus for the uniform distribution example, θ̂2 is a biased estimator of θ and

bias(θ̂2) = E(θ̂2)− θ =
n

n+ 1
θ − θ = − 1

n+ 1
θ,

which goes to zero as n→∞. However, θ̂1 = 2X̄ is unbiased since E(θ̂1) = 2E(X̄) = 2 θ2 = θ.
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Unbiased estimators are “correct on average”, but that does not mean that they are guaranteed
to provide estimates which are close to the estimand θ. A better measure of the quality of an
estimator than bias is the mean squared error (or m.s.e.), defined as

m.s.e.(θ̃) = E
[
(θ̃ − θ)2

]
.

Therefore, if θ̃ is unbiased for θ, i.e. if E(θ̃) = θ, then m.s.e.(θ̃) = Var(θ̃). In general, we have the
following result:

m.s.e.(θ̃) = Var(θ̃) + bias(θ̃)2.

The proof is similar to the one we did in Lecture 2.

m.s.e.(θ̃) = E
[
(θ̃ − θ)2

]
= E

[(
θ̃ − E

(
θ̃
)

+ E
(
θ̃
)
− θ
)2
]

= E

[(
θ̃ − E

(
θ̃
))2

+
(
E
(
θ̃
)
− θ
)2

+ 2
(
θ̃ − E

(
θ̃
))(

E
(
θ̃
)
− θ
)]

= E
[
θ̃ − E

(
θ̃
)]2

+ E
[
E
(
θ̃
)
− θ
]2

+ 2E
[(
θ̃ − E

(
θ̃
))(

E
(
θ̃
)
− θ
)]

= Var
(
θ̃
)

+
[
E
(
θ̃
)
− θ
]2

+ 2
(
E
(
θ̃
)
− θ
)
E
[(
θ̃ − E

(
θ̃
))]

= Var
(
θ̃
)

+ bias(θ̃)2 + 2
(
E
(
θ̃
)
− θ
) [
E
(
θ̃
)
− E

(
θ̃
)]

= Var
(
θ̃
)

+ bias(θ̃)2.

Hence, the mean squared error incorporates both the bias and the variability (sampling variance)
of θ̃. We are then faced with the bias-variance trade-off when selecting an optimal estimator. We
may allow the estimator to have a little bit of bias if we can ensure that the variance of the biased
estimator will be much smaller than that of any unbiased estimator.

♥ Example 59 Uniform distribution Continuing with the uniform distribution U [0, θ] example,
we have seen that θ̂1 = 2X̄ is unbiased for θ but bias(θ̂2) = − 1

n+1θ. How do these estimators

compare with respect to the m.s.e? Since θ̂1 is unbiased, its m.s.e is its variance. In the next
lecture, we will prove that for random sampling from any population

Var(X̄) =
Var(X)

n
,

where Var(X) is the variance of the population sampled from. Returning to our example, we know

that if X ∼ U [0, θ] then Var(X) = θ2

12 . Therefore we have:

m.s.e.(θ̂1) = Var
(
θ̂1

)
= Var

(
2X̄
)

= 4Var
(
X̄
)

= 4
θ2

12n
=
θ2

3n
.

Now, for θ̂2 we know that:

1. Var(θ̂2) = nθ2

(n+2)(n+1)2
;
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2. bias(θ̂2) = − 1
n+1θ.

Now

m.s.e.(θ̂2) = Var
(
θ̂2

)
+ bias(θ̂2)2

= nθ2

(n+2)(n+1)2
+ θ2

(n+1)2

= θ2

(n+1)2

(
n
n+2 + 1

)
= θ2

(n+1)2
2n+2
n+2 .

Clearly, the m.s.e of θ̂2 is an order of magnitude (of order n2 rather than n) smaller than the m.s.e
of θ̂1, providing justification for the preference of θ̂2 = max{X1, X2, . . . , Xn} as an estimator of θ.

4.2.5 Take home points

In this lecture we have learned the basics of estimation. We have learned that estimates are
particular values and estimators have probability distributions. We have also learned the concepts
of the bias and variance of an estimator. We have proved a key fact that the mean squared error
of an estimator is composed of two pieces, namely bias and variance. Sometimes there may be
bias-variance trade-off where a little bias can lead to much lower variance. We have illustrated this
with an example.

4.3 Lecture 21: Estimation of mean and variance and standard
error

4.3.1 Lecture mission

Often, one of the main tasks of a statistician is to estimate a population average or mean. However
the estimates, using whatever procedure, will not be usable or scientifically meaningful if we do
not know their associated uncertainties. For example, a statement such as: “the Arctic ocean will
be completely ice-free in the summer in the next few decades” provides little information as it
does not communicate the extent or the nature of the uncertainty in it. Perhaps a more precise
statement could be: “the Arctic ocean will be completely ice-free in the summer some time in the
next 20-30 years”. This last statement not only gives a numerical value for the number of years
for complete ice-melt in the summer, but also acknowledges the uncertainty of ±5 years in the
estimate. A statistician’s main job is to estimate such uncertainties. In this lecture, we will get
started with estimating uncertainties when we estimate a population mean. We will introduce the
standard error of an estimator.

4.3.2 Estimation of a population mean

Suppose that x1, . . . , xn is a random sample from any probability distribution f(x), which may be
discrete or continuous. Suppose that we want to estimate the unknown population mean E(X) = µ
and variance, Var(X) = σ2. In order to do this, it is not necessary to make any assumptions about
f(x), so this may be thought of as nonparametric inference.

We have the following results:
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R1 the sample mean

X̄ =
1

n

n∑
i=1

Xi

is an unbiased estimator of µ = E(X), i.e. E(X̄) = µ,

R2 Var(X̄) = σ2/n,

R3 the sample variance with divisor n− 1

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

is an unbiased estimator of σ2, i.e. E(S2) = σ2.

We prove R1 as follows.

E[X̄] =
1

n

n∑
i=1

E(Xi) =
1

n

n∑
i=1

E(X) = E(X),

so X̄ is an unbiased estimator of E(X).

We prove R2 using the result that for independent random variables the variance of the sum is
the sum of the variances from Lecture 17. Thus,

Var[X̄] =
1

n2

n∑
i=1

Var(Xi) =
1

n2

n∑
i=1

Var(X) =
n

n2
Var(X) =

σ2

n
,

so the m.s.e. of X̄ is Var(X)/n. This proves the following assertion we made earlier:

Variance of the sample mean = Population Variance divided by the sample size.

We now want to prove R3, i.e. show that the sample variance with divisor n− 1 is an unbiased
estimator of the population variance σ2, i.e. E(S2) = σ2. We have

S2 =
1

n− 1

n∑
i=1

(
Xi − X̄

)2
=

1

n− 1

[
n∑
i=1

X2
i − nX̄2

]
.

To evaluate the expectation of the above, we need E(X2
i ) and E(X̄2). In general, we know for any

random variable,

Var(Y ) = E(Y 2)− (E(Y ))2 ⇒ E(Y 2) = Var(Y ) + (E(Y ))2.

Thus, we have
E(X2

i ) = Var(Xi) + (E(Xi))
2 = σ2 + µ2,

and
E(X̄2) = Var(X̄) + (E(X̄))2 = σ2/n+ µ2,
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from R1 and R2. Now

E(S2) = E
{

1
n−1

[∑n
i=1X

2
i − nX̄2

]}
= 1

n−1

[∑n
i=1E(X2

i )− nE(X̄2)
]

= 1
n−1

[∑n
i=1(σ2 + µ2)− n(σ2/n+ µ2)

]
= 1

n−1

[
nσ2 + nµ2 − σ2 − nµ2)

]
= σ2 ≡ Var(X).

In words, this proves that

The sample variance is an unbiased estimator of the population variance.

4.3.3 Standard deviation and standard error

It follows that, for an unbiased (or close to unbiased) estimator θ̃,

m.s.e.(θ̃) = Var(θ̃)

and therefore the sampling variance of the estimator is an important summary of its quality.

We usually prefer to focus on the standard deviation of the sampling distribution of θ̃,

s.d.(θ̃) =

√
Var(θ̃).

In practice we will not know s.d.(θ̃), as it will typically depend on unknown features of the
distribution of X1, . . . , Xn. However, we may be able to estimate s.d.(θ̃) using the observed sample
x1, . . . , xn. We define the standard error, s.e.(θ̃), of an estimator θ̃ to be an estimate of the standard
deviation of its sampling distribution, s.d.(θ̃).

Standard error of an estimator is an estimate of the standard deviation
of its sampling distribution

We proved that

Var[X̄] =
σ2

n
⇒ s.d.(X̄) =

σ√
n
.

As σ is unknown, we cannot calculate this standard deviation. However, we know that E(S2) = σ2,
i.e. that the sample variance is an unbiased estimator of the population variance. Hence S2/n is
an unbiased estimator for Var(X̄). Therefore we obtain the standard error of the mean, s.e.(X̄),
by plugging in the estimate

s =

(
1

n− 1

n∑
i=1

(xi − x̄)2

)1/2

of σ into s.d.(X̄) to obtain

s.e.(X̄) =
s√
n
.
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Therefore, for the computer failure data, our estimate, x̄ = 3.75, for the population mean is
associated with a standard error

s.e.(X̄) =
3.381√

104
= 0.332.

Note that this is ‘a’ standard error, so other standard errors may be available. Indeed, for parametric
inference, where we make assumptions about f(x), alternative standard errors are available. For
example, X1, . . . , Xn are i.i.d. Poisson(λ) random variables. E(X) = λ, so X̄ is an unbiased

estimator of λ. Var(X) = λ, so another s.e.(X̄) =

√
λ̂/n =

√
x̄/n. In the computer failure data

example, this is
√

3.75
104 = 0.19.

4.3.4 Take home points

In this lecture we have defined the standard error of an estimator. This is very important in practice,
as the standard error tells us how precise our estimate is through how concentrated the sampling
distribution of the estimator is. For example, in the age guessing example in R lab session 3, a
standard error of 15 years indicates hugely inaccurate guesses. We have learned three key results:
the sample mean is an unbiased estimate of the population mean; the variance of the sample mean
is the population variance divided by the sample size; and the sample variance with divisor n − 1
is an unbiased estimator of the population variance.

4.4 Lecture 22: Interval estimation

4.4.1 Lecture mission

In any estimation problem it is very hard to guess the exact true value, but it is often much better
(and easier?) to provide an interval where the true value is very likely to fall. For example, think
of guessing the age of a stranger. In this lecture we will learn to use the results of the previous
lecture to obtain confidence intervals for a mean parameter of interest. The methods are important
to learn so that we can make probability statements about the random intervals as opposed to just
pure guesses, e.g. estimating my age to be somewhere between 30 and 60. Statistical methods
allow us to be much more precise by harnessing the power of the data.

4.4.2 Basics

An estimate θ̃ of a parameter θ is sometimes referred to as a point estimate. The usefulness of a
point estimate is enhanced if some kind of measure of its precision can also be provided. Usually,
for an unbiased estimator, this will be a standard error, an estimate of the standard deviation of the
associated estimator, as we have discussed previously. An alternative summary of the information
provided by the observed data about the location of a parameter θ and the associated precision is
an interval estimate or confidence interval.

Suppose that x1, . . . , xn are observations of random variables X1, . . . , Xn whose joint pdf is
specified apart from a single parameter θ. To construct a confidence interval for θ, we need to find
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a random variable T (X, θ) whose distribution does not depend on θ and is therefore known. This
random variable T (X, θ) is called a pivot for θ. Hence we can find numbers h1 and h2 such that

P (h1 ≤ T (X, θ) ≤ h2) = 1− α (1),

where 1− α is any specified probability. If (1) can be ‘inverted’ (or manipulated), we can write it
as

P [g1(X) ≤ θ ≤ g2(X)] = 1− α. (2)

Hence with probability 1 − α, the parameter θ will lie between the random variables g1(X) and
g2(X). Alternatively, the random interval [g1(X), g2(X)] includes θ with probability 1 − α. Now,
when we observe x1, . . . , xn, we observe a single observation of the random interval [g1(X), g2(X)],
which can be evaluated as [g1(x), g2(x)]. We do not know if θ lies inside or outside this interval,
but we do know that if we observed repeated samples, then 100(1− α)% of the resulting intervals
would contain θ. Hence, if 1−α is high, we can be reasonably confident that our observed interval
contains θ. We call the observed interval [g1(x), g2(x)] a 100(1 − α)% confidence interval for θ.
It is common to present intervals with high confidence levels, usually 90%, 95% or 99%, so that
α = 0.1, 0.05 or 0.01 respectively.

4.4.3 Confidence interval for a normal mean

Let X1, . . . , Xn be i.i.d. N(µ, σ2) random variables. We know that from CLT Lecture 14

X̄ ∼ N(µ, σ2/n) ⇒
√
n

(X̄ − µ)

σ
∼ N(0, 1).

Suppose we know that σ = 10, so
√
n(X̄ − µ)/σ is a pivot for µ. Then we can use the distribution

function of the standard normal distribution to find values h1 and h2 such that

P

(
h1 ≤

√
n

(X̄ − µ)

σ
≤ h2

)
= 1− α

for a chosen value of 1−α which is called the confidence level. So h1 and h2 are chosen so that the
shaded area in the figure is equal to the confidence level 1− α.

It is common practice to make the interval symmetric, so that the two unshaded areas are equal
(to α/2), in which case

−h1 = h2 ≡ h and Φ(h) = 1− α

2
.

The most common choice of confidence level is 1 − α = 0.95, in which case h = 1.96 =
qnorm(0.975). You may also occasionally see 90% (h = 1.645 = qnorm(0.95)) or 99% (h =
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2.58=qnorm(0.995)) intervals. We discussed these values in Lecture 15. We generally use the 95%
intervals for a reasonably high level of confidence without making the interval unnecessarily wide.

Therefore we have

P

(
−1.96 ≤

√
n

(X̄ − µ)

σ
≤ 1.96

)
= 0.95

⇒ P

(
X̄ − 1.96

σ√
n
≤ µ ≤ X̄ + 1.96

σ√
n

)
= 0.95.

Hence, X̄ − 1.96 σ√
n

and X̄ + 1.96 σ√
n

are the endpoints of a random interval which includes µ with

probability 0.95. The observed value of this interval,
(
x̄± 1.96 σ√

n

)
, is called a 95% confidence

interval for µ.

♥ Example 60 For the fast food waiting time data, we have n = 20 data points combined from
the morning and afternoon data sets. We have x̄ = 67.85 and n = 20. Hence, under the normal
model assuming (just for the sake of illustration) σ = 18, a 95% confidence interval for µ is

67.85− 1.96(18/
√

20) ≤ µ ≤ 67.85 + 1.96(18/
√

20)

⇒ 59.96 ≤ µ ≤ 75.74

The R command is mean(a) + c(-1, 1) * qnorm(0.975) * 18/sqrt(20), assuming a is the
vector containing 20 waiting times. If σ is unknown, we need to seek alternative methods for finding
the confidence intervals.
Some important remarks about confidence intervals.

1. Notice that x̄ is an unbiased estimate of µ, σ/
√
n is the standard error of the estimate and 1.96

(in general h in the above discussion) is a critical value from the associated known sampling
distribution. The formula (x̄± 1.96σ/

√
n) for the confidence interval is then generalised as:

Estimate ± Critical value × Standard error

where the estimate is x̄, the critical value is 1.96 and the standard error is σ/
√
n. This is

so much easier to remember. We will see that this formula holds in many of the following
examples, but not all.

2. Confidence intervals are frequently used, but also frequently misinterpreted. A 100(1− α)%
confidence interval for θ is a single observation of a random interval which, under repeated
sampling, would include θ 100(1− α)% of the time.

The following example from the National Lottery in the UK clarifies the interpretation. We
collected 6 chosen lottery numbers (sampled at random from 1 to 49) for 20 weeks and then
constructed 95% confidence intervals for the population mean µ = 25 and plotted the intervals
along with the observed sample means in the following figure. It can be seen that exactly
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one out of 20 (5%) of the intervals do not contain the true population mean 25. Although
this is a coincidence, it explains the main point that if we construct the random intervals
with 100(1 − α)% confidence levels again and again for hypothetical repetition of the data,
on average 100(1− α)% of them will contain the true parameter.

3. A confidence interval is not a probability interval. You should avoid making statements like
P (1.3 < θ < 2.2) = 0.95. In the classical approach to statistics you can only make probability
statements about random variables, and θ is assumed to be a constant.

4. If a confidence interval is interpreted as a probability interval, this may lead to problems.
For example, suppose that X1 and X2 are i.i.d. U [θ − 1

2 , θ + 1
2 ] random variables. Then

P [min(X1, X2) < θ < max(X1, X2)] = 1
2 so [min(x1, x2),max(x1, x2)] is a 50% confidence

interval for θ, where x1 and x2 are the observed values of X1 and X2. Now suppose that
x1 = 0.3 and x2 = 0.9. What is P (0.3 < θ < 0.9)?

4.4.4 Take home points

In this lecture we have learned to obtain confidence intervals by using an appropriate statistic in the
pivoting technique. The main task is then to invert the inequality so that the unknown parameter
is in the middle by itself and the two end points are functions of the sample observations. The most
difficult task is to correctly interpret confidence intervals, which are not probability intervals but
have long-run properties. That is, the interval will contain the true parameter with the stipulated
confidence level only under infinitely repeated sampling.
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4.5 Lecture 23: Confidence intervals using the CLT

4.5.1 Lecture mission

Confidence intervals are generally difficult to find. The difficulty lies in finding a pivot, i.e. a
statistic T (X, θ) such that

P (h1 ≤ T (X, θ) ≤ h2) = 1− α

for two suitable numbers h1 and h2, and also that the above can be inverted to put the unknown θ
in the middle of the inequality inside the probability statement. One solution to this problem is to
use the powerful Central Limit Theorem (CLT) to claim normality, and then basically follow the
above normal example for known variance.

4.5.2 Confidence intervals for µ using the CLT

The CLT allows us to assume the large sample approximation

√
n

(X̄ − µ)

σ

approx∼ N(0, 1) as n→∞.

So a general confidence interval for µ can be constructed, just as before in Section 4.4.3. Thus a
95% confidence interval (CI) for µ is given by x̄ ± 1.96 σ√

n
. But note that σ is unknown so this

CI cannot be used unless we can estimate σ, i.e. replace the unknown s.d. of X̄ by its estimated
standard error. In this case, we get the CI in the familiar form:

Estimate ± Critical value × Standard error

Suppose that we do not assume any distribution for the sampled random variable X but assume
only that X1, . . . , Xn are i.i.d, following the distribution of X where E(X) = µ and Var(X) = σ2.
We know that the standard error of X̄ is s/

√
n where s is the sample standard deviation with

divisor n− 1. Then the following provides a 95% CI for µ:

x̄± 1.96
s√
n
.

♥ Example 61 For the computer failure data, x̄ = 3.75, s = 3.381 and n = 104. Under the
model that the data are observations of i.i.d. random variables with population mean µ (but no
other assumptions about the underlying distribution), we compute a 95% confidence interval for µ
to be (

3.75− 1.96
3.381√

104
, 3.75 + 1.96

3.381√
104

)
= (3.10, 4.40).

If we can assume a distribution for X, i.e. a parametric model for X, then we can do slightly
better in estimating the standard error of X̄ and as a result we can improve upon the previously
obtained 95% CI. Two examples follow.

♥ Example 62 Poisson If X1, . . . , Xn are modelled as i.i.d. Poisson(λ) random variables, then

µ = λ and σ2 = λ. We know Var(X̄) = σ2/n = λ/n. Hence a standard error is

√
λ̂/n =

√
x̄/n
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since λ̂ = X̄ is an unbiased estimator of λ. Thus a 95% CI for µ = λ is given by

x̄± 1.96

√
x̄

n
.

For the computer failure data, x̄ = 3.75, s = 3.381 and n = 104. Under the model that the data
are observations of i.i.d. random variables following a Poisson distribution with population mean
λ, we compute a 95% confidence interval for λ as

x̄± 1.96

√
x̄

n
= 3.75± 1.96

√
3.75/104 = (3.38, 4.12).

We see that this interval is narrower (0.74 = 4.12 − 3.38) than the earlier interval (3.10,4.40),
which has a length of 1.3. We prefer narrower confidence intervals as they facilitate more accurate
inference regarding the unknown parameter.

♥ Example 63 Bernoulli If X1, . . . , Xn are modelled as i.i.d. Bernoulli(p) random variables,
then µ = p and σ2 = p(1− p). We know Var(X̄) = σ2/n = p(1− p)/n. Hence a standard error is√
p̂(1− p̂)/n =

√
x̄(1− x̄)/n, since p̂ = X̄ is an unbiased estimator of p. Thus a 95% CI for µ = p

is given by

x̄± 1.96

√
x̄(1− x̄)

n
.

For the example, suppose x̄ = 0.2 and n = 10. Then we obtain the 95% CI as

0.2± 1.96
√

(0.2× 0.8)/10 = (−0.048, 0.448).

This is wrong as n is too small for the large sample approximation to be accurate. Hence we need
to look for other alternatives which may work better.

4.5.3 Confidence interval for a Bernoulli p by quadratic inversion

It turns out that for the Bernoulli and Poisson distributions we can find alternative confidence
intervals without using the approximation for standard error but still using the CLT. This is more
complicated and requires us to solve a quadratic equation. We consider the two distributions
separately.

We start with the CLT and obtain the following statement:

P

(
−1.96 ≤

√
n (X̄−p)√

p(1−p)
≤ 1.96

)
= 0.95

⇔ P
(
−1.96

√
p(1− p) ≤

√
n(X̄ − p) ≤ 1.96

√
p(1− p)

)
= 0.95

⇔ P
(
−1.96

√
p(1− p)/n ≤ (X̄ − p) ≤ 1.96

√
p(1− p)/n

)
= 0.95

⇔ P
(
p− 1.96

√
p(1− p)/n ≤ X̄ ≤ p+ 1.96

√
p(1− p)/n

)
= 0.95

⇔ P
(
L(p) ≤ X̄ ≤ R(p)

)
= 0.95,
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where L(p) = p − h
√
p(1− p)/n,R(p) = p + h

√
p(1− p)/n, h = 1.96. Now, consider the inverse

mappings L−1(x) and R−1(x) so that:

P
[
L(p) ≤ X̄ ≤ R(p)

]
= 0.95

⇔ P
[
R−1(X̄) ≤ p ≤ L−1(X̄)

]
= 0.95

which now defines our confidence interval (R−1(X̄), L−1(X̄)) for p. We can obtain R−1(x̄) and
L−1(x̄) by solving the equations R(p) = x̄ and L(p) = x̄ for p, treating n and x̄ as known quantities.
Thus we have,

R(p) = x̄, L(p) = x̄

⇔ (x̄− p)2 = h2p(1− p)/n, where h = 1.96

⇔ p2(1 + h2/n)− p(2x̄+ h2/n) + x̄2 = 0

The endpoints of the confidence interval are the roots of the quadratic. Hence, the endpoints
of the 95% confidence interval for p are:(

2x̄+ h2

n

)
±
[(

2x̄+ h2

n

)2
− 4x̄2

(
1 + h2

n

)]1/2

2
(

1 + h2

n

)

=

(
x̄+ h2

2n

)
±
[(
x̄+ h2

2n

)2
− x̄2

(
1 + h2

n

)]1/2

(
1 + h2

n

)
=

x̄+ h2

2n ±
h√
n

[
h2

4n + x̄(1− x̄)
]1/2(

1 + h2

n

) .

This is sometimes called the Wilson Score Interval. The following R code calculates this for
given n, x̄ and confidence level α which determines the value of h. Returning to the previous
example, n = 10 and x̄ = 0.2, the 95% CI obtained from this method is (0.057, 0.510) compared
to the previous illegitimate one (−0.048, 0.448). In fact you can see that the intervals obtained by
quadratic inversion are more symmetric and narrower as n increases, and are also more symmetric
for x̄ closer to 0.5. See the table below:

n x̄ Quadratic inversion Plug-in s.e. estimation
Lower end Upper end Lower end Upper end

10 0.2 0.057 0.510 –0.048 0.448
10 0.5 0.237 0.763 0.190 0.810
20 0.1 0.028 0.301 –0.031 0.231
20 0.2 0.081 0.416 0.025 0.375
20 0.5 0.299 0.701 0.281 0.719
50 0.1 0.043 0.214 0.017 0.183
50 0.2 0.112 0.330 0.089 0.311
50 0.5 0.366 0.634 0.361 0.639
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For smaller n and x̄ closer to 0 (or 1), the approximation required for the plug-in estimate of the
standard error is insufficiently reliable. However, for larger n it is adequate.

4.5.4 Confidence interval for a Poisson λ by quadratic inversion

Here we proceed as in the Bernoulli case and using the CLT claim that a 95% CI for λ is given by:

P

(
−1.96 ≤

√
n

(X̄ − λ)√
λ

≤ 1.96

)
= 0.95 ⇒ P

(
n

(X̄ − λ)2

λ
≤ 1.962

)
= 0.95.

Now the confidence interval for λ is found by solving the (quadratic) equality for λ by treating n, x̄
and h to be known:

n
(x̄− λ)2

λ
= h2, where h = 1.96

⇒ x̄2 − 2λx̄+ λ2 = h2λ/n

⇒ λ2 − λ(2x̄+ h2/n) + x̄2 = 0.

Hence, the endpoints of the 95% confidence interval for λ are:

(
2x̄+ h2

n

)
±
[(

2x̄+ h2

n

)2
− 4x̄2

]1/2

2
= x̄+

h2

2n
± h

n1/2

[
h2

4n
+ x̄

]1/2

.

♥ Example 64 For the computer failure data, x̄ = 3.75 and n = 104. For a 95% confidence
interval (CI), h = 1.96. Hence, we calculate the above CI using the R commands:

x <- scan("compfail.txt")

n <- length(x)

h <- qnorm(0.975)

mean(x) + (h*h)/(2*n) + c(-1, 1) * h/sqrt(n) * sqrt(h*h/(4*n) + mean(x))

The result is (3.40, 4.14), which compares well with the earlier interval (3.38, 4.12).

4.5.5 Take home points

In this lecture we learned how to find confidence intervals using the CLT, when the sample size is
large. We have seen that we can make more accurate inferences if we can assume a model, e.g. the
Poisson model for the computer failure data. However, we have also encountered problems when
applying the method for a small sample size. In such cases we should use alternative methods for
calculating confidence intervals. For example, we learned a technique of finding confidence intervals
which does not require us to approximately estimate the standard errors for Bernoulli and Poisson
distributions. In the next lecture, we will learn how to find an exact confidence interval for the
normal mean µ using the t-distribution.
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4.6 Lecture 24: Exact confidence interval for the normal mean

4.6.1 Lecture mission

Recall that we can obtain better quality inferences if we can justify a precise model for the data.
This saying is analogous to the claim that a person can better predict and infer in a situation
when there are established rules and regulations, i.e. the analogue of a statistical model. In this
lecture, we will discuss a procedure for finding confidence intervals based on the statistical modelling
assumption that the data are from a normal distribution. This assumption will enable us to find
an exact confidence interval for the mean rather than an approximate one using the central limit
theorem.

4.6.2 Obtaining an exact confidence interval for the normal mean

For normal models we do not have to rely on large sample approximations, because it turns out
that the distribution of

T =

√
n(X̄ − µ)

S
,

where S2 is the sample variance with divisor n − 1, is standard (easily calculated) and thus the
statistic T = T (X, µ) can be an exact pivot for any sample size n > 1. The point about easy
calculation is that for any given 1− α, e.g. 1− α = 0.95, we can calculate the critical value h such
that P (−h < T < h) = 1 − α. Note also that the pivot T does not involve the other unknown
parameter of the normal model, namely the variance σ2. If indeed, we can find h for any given
1− α, we can proceed as follows to find the exact CI for µ:

P (−h ≤ T ≤ h) = 1− α

i.e. P

(
−h ≤

√
n

(X̄ − µ)

S
≤ h

)
= 0.95

⇒ P

(
X̄ − h S√

n
≤ µ ≤ X̄ + h

S√
n

)
= 0.95

The observed value of this interval, (x̄ ± h s√
n

), is the 95% confidence interval for µ. Remarkably,

this also of the general form, Estimate ± Critical value × Standard error, where the Critical value
is h and the standard error of the sample mean is s√

n
. Now, how do we find the critical value h for

a given 1− α? We need to introduce the t-distribution.

Let X1, . . . , Xn be i.i.d N(µ, σ2) random variables. Define X̄ = 1
n

∑n
i=1Xi and

S2 =
1

n− 1

(
n∑
i=1

X2
i − nX̄2

)
.

Then, it can be shown (and will be in MATH2011) that

√
n

(X̄ − µ)

S
∼ tn−1,
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where tn−1 denotes the standard t distribution with n− 1 degrees of freedom. The standard t dis-
tribution is a family of distributions which depend on one parameter called the degrees-of-freedom
(df) which is n − 1 here. The concept of degrees of freedom is that it is usually the number of
independent random samples, n here, minus the number of linear parameters estimated, 1 here for
µ. Hence the df is n− 1.

The probability density function of the tk distribution is similar to a standard normal, in that
it is symmetric around zero and ‘bell-shaped’, but the t-distribution is more heavy-tailed, giving
greater probability to observations further away from zero. The figure below illustrates the tk
density function for k = 1, 2, 5, 20 together with the standard normal pdf (solid line).

The values of h for a given 1−α have been tabulated using the standard t-distribution and can
be obtained using the R command qt (abbreviation for quantile of t). For example, if we want to
find h for 1−α = 0.95 and n = 20 then we issue the command: qt(0.975, df=19) = 2.093. Note
that it should be 0.975 so that we are splitting 0.05 probability between the two tails equally and
the df should be n− 1 = 19. Indeed, using the above command repeatedly, we obtain the following
critical values for the 95% interval for different values of the sample size n.

n 2 5 10 15 20 30 50 100 ∞
h 12.71 2.78 2.26 2.14 2.09 2.05 2.01 1.98 1.96

Note that the critical value approaches 1.96 (which is the critical value for the normal distribution)
as n → ∞, since the t-distribution itself approaches the normal distribution for large values of its
df parameter.

If you can justify that the underlying distribution is normal then you
can use the t-distribution-based confidence interval.

♥ Example 65 Fast food waiting time revisited We would like to find a confidence interval for
the true mean waiting time. If X denotes the waiting time in seconds, we have n = 20, x̄ = 67.85,
s = 18.36. Hence, recalling that the critical value h = 2.093, from the command qt(0.975,

df=19), a 95% confidence interval for µ is

67.85− 2.093× 18.36/
√

20 ≤ µ ≤ 67.85 + 2.093× 18.36/
√

20

⇒ 59.26 ≤ µ ≤ 76.44.

In R we issue the commands:
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ffood <- read.csv("servicetime.csv", head=T)

a <- c(ffood$AM, ffood$PM)
mean(a) + c(-1, 1) * qt(0.975, df=19) * sqrt(var(a))/sqrt(20)

does the job and it gives the result (59.25, 76.45).
If we want a 90% confidence interval then we issue the command:
mean(a) + c(-1, 1) * qt(0.95, df=19) * sqrt(var(a))/sqrt(20),
which give (60.75, 74.95).
If we want a 99% confidence interval then we issue the command:
mean(a) + c(-1, 1) * qt(0.995, df=19) * sqrt(var(a))/sqrt(20),
which gives (56.10, 79.60). We can see clearly that the interval is getting wider as the level of

confidence is getting higher.

♥ Example 66 Weight gain revisited We would like to find a confidence interval for the true
average weight gain (final weight – initial weight). Here n = 68, x̄ = 0.8672 and s = 0.9653. Hence,
a 95% confidence interval for µ is

0.8672− 1.996× 0.9653/
√

68 ≤ µ ≤ 0.8672 + 1.996× 0.9653/
√

68

⇒ 0.6335 ≤ µ ≤ 1.1008

[In R, we obtain the critical value 1.996 by qt(0.975, df=67) or -qt(0.025, df=67)]
In R the command is: mean(x) + c(-1, 1) * qt(0.975, df=67) * sqrt(var(x)/68) if the

vector x contains the 68 weight gain differences. You may obtain this by issuing the commands:
wgain <- read.table("wtgain.txt", head=T)

x <- wgain$final -wgain$initial
Note that the interval here does not include the value 0, so it is very likely that the weight gain

is significantly positive, which we will justfy using what is called testing of hypothesis.

4.6.3 Take home points

In this lecture we have learned how to find an exact confidence interval for a population mean
based on the assumption that the population is normal. The confidence interval is based on the
t-distribution which is a very important distribution in statistics. The t-distribution converges
to the normal distribution when its only parameter, called the degrees of freedom, becomes very
large. If the assumption of the normal distribution for the data can be justified, then the method
of inference based on the t-distribution is best when the variance parameter, sometimes called the
nuisance parameter, is unknown.

4.7 Lecture 25: Hypothesis testing I

4.7.1 Lecture mission

The manager of a new fast food chain claims that the average waiting time to be served in their
restaurant is less than a minute. The marketing department of a mobile phone company claims that
their phones never break down in the first three years of their lifetime. A professor of nutrition
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claims that students gain significant weight in the first year of their life in college away form
home. How can we verify these claims? We will learn the procedures of hypothesis testing for such
problems.

4.7.2 Introduction

In statistical inference, we use observations x1, . . . , xn of univariate random variables X1, . . . , Xn in
order to draw inferences about the probability distribution f(x) of the underlying random variable
X. So far, we have mainly been concerned with estimating features (usually unknown parameters)
of f(x). It is often of interest to compare alternative specifications for f(x). If we have a set of
competing probability models which might have generated the observed data, we may want to de-
termine which of the models is most appropriate. A proposed (hypothesised) model for X1, . . . , Xn

is then referred to as a hypothesis, and pairs of models are compared using hypothesis tests.

For example, we may have two competing alternatives, f (0)(x) (model H0) and f (1)(x) (model
H1) for f(x), both of which completely specify the joint distribution of the sample X1, . . . , Xn.
Completely specified statistical models are called simple hypotheses. Usually, H0 and H1 both take
the same parametric form f(x, θ), but with different values θ(0) and θ(1) of θ. Thus the joint distri-
bution of the sample given by f(X) is completely specified apart from the values of the unknown
parameter θ and θ(0) 6= θ(1) are specified alternative values.

More generally, competing hypotheses often do not completely specify the joint distribution of
X1, . . . , Xn. For example, a hypothesis may state that X1, . . . , Xn is a random sample from the
probability distribution f(x; θ) where θ < 0. This is not a completely specified hypothesis, since it
is not possible to calculate probabilities such as P (X1 < 2) when the hypothesis is true, as we do
not know the exact value of θ. Such an hypothesis is called a composite hypothesis.

Examples of hypotheses:

X1, . . . , Xn ∼ N(µ, σ2) with µ = 0, σ2 = 2.

X1, . . . , Xn ∼ N(µ, σ2) with µ = 0, σ2 ∈ R+.

X1, . . . , Xn ∼ N(µ, σ2) with µ 6= 0, σ2 ∈ R+.

X1, . . . , Xn ∼ Bernoulli(p) with p = 1
2 .

X1, . . . , Xn ∼ Bernoulli(p) with p 6= 1
2 .

X1, . . . , Xn ∼ Bernoulli(p) with p > 1
2 .

X1, . . . , Xn ∼ Poisson(λ) with λ = 1.

X1, . . . , Xn ∼ Poisson(θ) with θ > 1.

4.7.3 Hypothesis testing procedure

A hypothesis test provides a mechanism for comparing two competing statistical models, H0 and
H1. A hypothesis test does not treat the two hypotheses (models) symmetrically. One hypothesis,
H0, is given special status, and referred to as the null hypothesis. The null hypothesis is the refer-
ence model, and is assumed to be appropriate unless the observed data strongly indicate that H0

is inappropriate, and that H1 (the alternative hypothesis) should be preferred.
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Hence, the fact that a hypothesis test does not reject H0 should not be taken as evidence that
H0 is true and H1 is not, or that H0 is better-supported by the data than H1, merely that the data
does not provide significant evidence to reject H0 in favour of H1.

A hypothesis test is defined by its critical region or rejection region, which we shall denote by
C. C is a subset of Rn and is the set of possible observed values of X which, if observed, would
lead to rejection of H0 in favour of H1, i.e.

If x ∈ C H0 is rejected in favour of H1

If x 6∈ C H0 is not rejected

As X is a random variable, there remains the possibility that a hypothesis test will give an erroneous
result. We define two types of error:

Type I error: H0 is rejected when it is true
Type II error: H0 is not rejected when it is false

The following table helps to understand further:

H0 true H0 false

Reject H0 Type I error Correct decision

Do not reject H0 Correct decision Type II error

When H0 and H1 are simple hypotheses, we can define

α = P (Type I error) = P (X ∈ C) if H0 is true
β = P (Type II error) = P (X 6∈ C) if H1 is true

♥ Example 67 Uniform Suppose that we have one observation from the uniform distribution
on the range (0, θ). In this case, f(x) = 1/θ if 0 < x < θ and P (X ≤ x) = x

θ for 0 < x < θ. We
want to test H0 : θ = 1 against the alternative H1 : θ = 2. Suppose we decide arbitrarily that we
will reject H0 if X > 0.75. Then

α = P (Type I error) = P (X > 0.75) if H0 is true
β = P (Type II error) = P (X < 0.75) if H1 is true

which will imply:

α = P (X > 0.75|θ = 1) = 1− 0.75 =
1

4
,

β = P (X < 0.75|θ = 2) = 0.75/2 =
3

8
.

Here the notation | means given that.

♥ Example 68 Poisson The daily demand for a product has a Poisson distribution with mean λ,
the demands on different days being statistically independent. It is desired to test the hypotheses
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H0 : λ = 0.7, H1 : λ = 0.3. The null hypothesis is to be accepted if in 20 days the number of days
with no demand is less than 15. Calculate the Type I and Type II error probabilities.

Let p denote the probability that the demand on a given day is zero.
Then

p = e−λ =

{
e−0.7 under H0

e−0.3 under H1.

If X denotes the number of days out of 20 with zero demand, it follows that

X ∼ B(20, e−0.7) under H0,

X ∼ B(20, e−0.3) under H1.

Thus

α = P (Reject H0|H0 true)

= P (X ≥ 15|X ∼ B(20, e−0.7))

= 1− P (X ≤ 14|X ∼ B(20, 0.4966))

= 1− 0.98028

= 0.01923 (1-pbinom(14,size=20,prob=0.4966) in R).

Furthermore

β = P (Accept H0|H1 true)

= P (X ≤ 14|X ∼ B(20, e−0.3))

= P (X ≤ 14|X ∼ B(20, 0.7408))

= P (Y ≥ 6|Y ∼ B(20, 0.2592))

= 1− P (Y ≤ 5|Y ∼ B(20, 0.2592))

= 1− 0.58022

= 0.42023 (1-pbinom(5,size=20,prob=0.2592) in R).

Sometimes α is called the size (or significance level) of the test and ω ≡ 1 − β is called the
power of the test. Ideally, we would like to avoid error so we would like to make both α and β as
small as possible. In other words, a good test will have small size, but large power. However, it is
not possible to make α and β both arbitrarily small. For example if C = ∅ then α = 0, but β = 1.
On the other hand if C = S = Rn then β = 0, but α = 1.

The general hypothesis testing procedure is to fix α to be some small value (often 0.05), so that
the probability of a Type I error is limited. In doing this, we are giving H0 precedence over H1,
and acknowledging that Type I error is potentially more serious than Type II error. (Note that for
discrete random variables, it may be difficult to find C so that the test has exactly the required
size). Given our specified α, we try to choose a test, defined by its rejection region C, to make β
as small as possible, i.e. we try to find the most powerful test of a specified size. Where H0 and
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H1 are simple hypotheses this can be achieved easily.

Note that tests are usually based on a one-dimensional test statistic T (X) whose sample space
is some subset of R. The rejection region is then a set of possible values for T (X), so we also think
of C as a subset of R. In order to be able to ensure the test has size α, the distribution of the test
statistic under H0 should be known.

4.7.4 The test statistic

We perform a hypothesis test by computing a test statistic, T (X). A test statistic must (obviously)
be a statistic (i.e. a function of X and other known quantities only). Furthermore, the random
variable T (X) must have a distribution which is known under the null hypothesis. The easiest way
to construct a test statistic is to obtain a pivot for θ. If T (X, θ) is a pivot for θ then its sampling
distribution is known and, therefore, under the null hypothesis (θ = θ0) the sampling distribution
of T (X, θ0) is known. Hence T (x, θ0) is a test statistic, as it depends on observed data x and the
hypothesised value θ0 only. We then assess the plausibility of H0 by evaluating whether T (x, θ0)
seems like a reasonable observation from its (known) distribution. This is all rather abstract. How
does it work in a concrete example?

4.7.5 Testing a normal mean µ

Suppose that we observe data x1, . . . , xn which are modelled as observations of i.i.d. N(µ, σ2)
random variables X1, . . . , Xn, and we want to test the null hypothesis

H0 : µ = µ0

against the alternative hypothesis
H1 : µ 6= µ0.

We recall that
√
n

(X̄ − µ)

S
∼ tn−1

and therefore, when H0 is true, often written as under H0,

√
n

(X̄ − µ0)

S
∼ tn−1

so
√
n(X̄−µ0)/s is a test statistic for this test. The sampling distribution of the test statistic when

the null hypothesis is true is called the null distribution of the test statistic. In this example, the
null distribution is the t-distribution with n− 1 degrees of freedom.

This test is called a t-test. We reject the null hypothesis H0 in favour of the alternative H1 if
the observed test statistic seems unlikely to have been generated by the null distribution.

♥ Example 69 Weight gain data
For the weight gain data, if x denotes the differences in weight gain, we have x̄ = 0.8672,

s = 0.9653 and n = 68. Hence our test statistic for the null hypothesis H0 : µ = µ0 = 0 is

√
n

(x̄− µ0)

s
= 7.41.
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The observed value of 7.41 does not seem reasonable from the graph below. The graph has
plotted the density of the t-distribution with 67 degrees of freedom, and a vertical line is drawn at
the observed value of 7.41. So there may be evidence here to reject H0 : µ = 0.

♥ Example 70 Fast food waiting time revisited Suppose the manager of the fast food outlet
claims that the average waiting time is only 60 seconds. So, we want to test H0 : µ = 60. We have
n = 20, x̄ = 67.85, s = 18.36. Hence our test statistic for the null hypothesis H0 : µ = µ0 = 60 is

√
n

(x̄− µ0)

s
=
√

20
(67.85− 60)

18.36
= 1.91.

The observed value of 1.91 may or may not be reasonable from the graph below. The graph
has plotted the density of the t-distribution with 19 degrees of freedom and a vertical line is drawn
at the observed value of 1.91. This value is a bit out in the tail but we are not sure, unlike in the
previous weight gain example. So how can we decide whether to reject the null hypothesis?

4.7.6 Take home points

In this lecture we have learned the concepts of hypothesis testing such as: simple and composite
hypotheses, null and alternative hypotheses, type I error and type II error and their probabilities,
test statistic and critical region. We have also introduced the t-test statistic for testing hypotheses
regarding a normal mean. We have not yet learned when to reject a null hypothesis, which will be
discussed in the next lecture.
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4.8 Lecture 26: Hypothesis testing II

4.8.1 Lecture mission

This lecture will discuss the rejection region of a hypothesis test with an example. We will learn
the key concepts of the level of significance, rejection region and the p-value associated with a
hypothesis test. We will also learn the equivalence of testing and interval estimation.

4.8.2 The significance level

In the weight gain example, it seems clear that there is no evidence to reject H0, but how extreme
(far from the mean of the null distribution) should the test statistic be in order for H0 to be
rejected? The significance level of the test, α, is the probability that we will erroneously reject H0

(called Type I error as discussed before). Clearly we would like α to be small, but making it too
small risks failing to reject H0 even when it provides a poor model for the observed data (Type II
error). Conventionally, α is usually set to a value of 0.05, or 5%. Therefore we reject H0 when the
test statistic lies in a rejection region which has probability α = 0.05 under the null distribution.

4.8.3 Rejection region for the t-test

For the t-test, the null distribution is tn−1 where n is the sample size, so the rejection region
for the test corresponds to a region of total probability α = 0.05 comprising the ‘most extreme’
values in the direction of the alternative hypothesis. If the alternative hypothesis is two-sided,
e.g. H1 : µ 6= µ0, then this is obtained as below, where the two shaded regions both have area
(probability) α/2 = 0.025.

The value of h depends on the sample size n and can be found by issuing the qt command.
Here are few examples obtained from qt(0.975, df=c(1, 4, 9, 14, 19, 29, 49, 99)):

n 2 5 10 15 20 30 50 100 ∞
h 12.71 2.78 2.26 2.14 2.09 2.05 2.01 1.98 1.96

Note that we need to put n− 1 in the df argument of qt and the last value for n =∞ is obtained
from the normal distribution.

However, if the alternative hypothesis is one-sided, e.g. H1 : µ > µ0, then the critical region
will only be in the right tail. Consequently, we need to leave an area α on the right and as a result
the critical values will be from a command such as:

qt(0.95, df=c(1, 4, 9, 14, 19, 29, 49, 99))
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n 2 5 10 15 20 30 50 100 ∞
h 6.31 2.13 1.83 1.76 1.73 1.70 1.68 1.66 1.64

4.8.4 t-test summary

Suppose that we observe data x1, . . . , xn which are modelled as observations of i.i.d. N(µ, σ2)
random variables X1, . . . , Xn and we want to test the null hypothesis H0 : µ = µ0 against the
alternative hypothesis H1 : µ 6= µ0:

1. Compute the test statistic

t =
√
n

(x̄− µ0)

s
.

2. For chosen significance level α (usually 0.05) calculate the rejection region for t, which is of
the form |t| > h where −h is the α/2 percentile of the null distribution, tn−1.

3. If your computed t lies in the rejection region, i.e. |t| > h, you report that H0 is rejected in
favour of H1 at the chosen level of significance. If t does not lie in the rejection region, you
report that H0 is not rejected. [Never refer to ‘accepting’ a hypothesis.]

♥ Example 71 Fast food waiting time We would like to test H0 : µ = 60 against the alternative
H1 : µ > 60, as this alternative will refute the claim of the store manager that customers only wait
for a maximum of one minute. We calculated the observed value to be 1.91. This is a one-sided test
and for a 5% level of significance, the critical value h will come from qt(0.95, df=19)=1.73. Thus
the observed value is higher than the critical value so we will reject the null hypothesis, disputing
the manager’s claim regarding a minute wait.

♥ Example 72 Weight gain
For the weight gain example x̄ = 0.8671, s = 0.9653, n = 68. Then, we would be interested in

testing H0 : µ = 0 against the alternative hypothesis H1 : µ 6= 0 in the model that the data are
observations of i.i.d. N(µ, σ2) random variables.

• We obtain the test statistic

t =
√
n

(x̄− µ0)

s
=
√

68
(0.8671− 0)

0.9653
= 7.41.

• Under H0 this is an observation from a t67 distribution. For significance level α = 0.05 the
rejection region is |t| > 1.996.

• Our computed test statistic lies in the rejection region, i.e. |t| > 1.996, so H0 is rejected in
favour of H1 at the 5% level of significance.

In R we can perform the test as follows:
wgain <- read.table("wtgain.txt", head=T)

x <- wgain$final - wgain$initial
t.test(x)

This gives the results: t = 7.4074, and df = 67.
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4.8.5 p-values

The result of a test is most commonly summarised by rejection or non-rejection of H0 at the
stated level of significance. An alternative, which you may see in practice, is the computation of
a p-value. This is the probability that the reference distribution would have generated the actual
observed value of the statistic or something more extreme. A small p-value is evidence against
the null hypothesis, as it indicates that the observed data were unlikely to have been generated
by the reference distribution. In many examples a threshold of 0.05 is used, below which the null
hypothesis is rejected as being insufficiently well-supported by the observed data. Hence for the
t-test with a two-sided alternative, the p-value is given by:

p = P (|T | > |tobs|) = 2P (T > |tobs|),

where T has a tn−1 distribution and tobs is the observed sample value.

However, if the alternative is one-sided and to the right then the p-value is given by:

p = P (T > tobs),

where T has a tn−1 distribution and tobs is the observed sample value.

A small p-value corresponds to an observation of T that is improbable (since it is far out in the
low probability tail area) under H0 and hence provides evidence against H0. The p-value should not
be misinterpreted as the probability that H0 is true. H0 is not a random event (under our models)
and so cannot be assigned a probability. The null hypothesis is rejected at significance level α if
the p-value for the test is less than α.

Reject H0 if p-value < α.

4.8.6 p-value examples

In the fast food example, a test of H0 : µ = 60 resulted in a test statistic t = 1.91. Then the p-value
is given by:

p = P (T > 1.91) = 0.036, when T ∼ t19.

This is the area of the shaded region in the figure overleaf. In R it is: 1 - pt(1.91, df=19). The
p-value 0.036 indicates some evidence against the manager’s claim at the 5% level of significance
but not the 1% level of significance. In the graph, what would be the area under the curve to the
right of of the red line?
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When the alternative hypothesis is two-sided the p-value has to be calculated from P (|T | > tobs),
where tobs is the observed value and T follows the t-distribution with n− 1 df. For the weight gain
example, because the alternative is two-sided, the p-value is given by:

p = P (|T | > 7.41) = 2.78× 10−10 ≈ 0.0, when T ∼ t67.

This very small p-value for the second example indicates very strong evidence against the null
hypothesis of no weight gain in the first year of university.

4.8.7 Equivalence of testing and interval estimation

Note that the 95% confidence interval for µ in the weight gain example has previously been calcu-
lated to be (0.6335, 1.1008) in Section 4.6.2. This interval does not include the hypothesised value
0 of µ. Hence we can conclude that the hypothesis test at the 5% level of significance will reject

the null hypothesis H0 : µ = 0. This is because |Tobs =
√
n(x̄−µ0)
s | > h implies and is implied by

µ0 being outside the interval (x̄ − hs/
√
n, x̄ + hs/

√
n). Notice that h is the same in both. For

this reason we often just calculate the confidence interval and take the reject/do not reject decision
merely by inspection.

4.8.8 Take home points

This lecture has introduced the key concepts for hypothesis testing. We have defined the p-value
of a test and learned that we reject the null hypothesis if the p-value of the test is less than a
given level of significance. We have also learned that hypothesis testing and interval estimation are
equivalent concepts.

4.9 Lecture 27: Two sample t-tests

4.9.1 Lecture mission

Suppose that we observe two samples of data, x1, . . . , xn and y1, . . . , ym, and that we propose to
model them as observations of

X1, . . . , Xn
i.i.d.∼ N(µX , σ

2
X)

and

Y1, . . . , Ym
i.i.d.∼ N(µY , σ

2
Y )

respectively, where it is also assumed that the X and Y variables are independent of each other.
Suppose that we want to test the hypothesis that the distributions of X and Y are identical, that
is

H0 : µX = µY , σX = σY = σ

against the alternative hypothesis

H1 : µX 6= µY .
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4.9.2 Two sample t-test statistic

In the probability lectures we proved that

X̄ ∼ N(µX , σ
2
X/n) and Ȳ ∼ N(µY , σ

2
Y /m)

and therefore

X̄ − Ȳ ∼ N
(
µX − µY ,

σ2
X

n
+
σ2
Y

m

)
.

Hence, under H0,

X̄ − Ȳ ∼ N
(

0, σ2

[
1

n
+

1

m

])
⇒

√
nm

n+m

(X̄ − Ȳ )

σ
∼ N(0, 1).

The involvement of the (unknown) σ above means that this is not a pivotal test statistic. It will be
proved in MATH2011 that if σ is replaced by its unbiased estimator S, which here is the two-sample
estimator of the common standard deviation, given by

S2 =

∑n
i=1(Xi − X̄)2 +

∑m
i=1(Yi − Ȳ )2

n+m− 2
,

then √
nm

n+m

(X̄ − Ȳ )

S
∼ tn+m−2.

Hence

t =

√
nm

n+m

(x̄− ȳ)

s

is a test statistic for this test. The rejection region is |t| > h where −h is the α/2 (usually 0.025)
percentile of tn+m−2.

Confidence interval for µX − µY .
From the hypothesis testing, a 100(1− α)% confidence interval is given by

x̄− ȳ ± h
√
n+m

nm
s,

where −h is the α/2 (usually 0.025) percentile of tn+m−2.

♥ Example 73 Fast food waiting time as a two sample t-test
In this example, we would like to know if there are significant differences between the AM and PM
waiting times. Here the 10 morning waiting times (x) are: 38, 100, 64, 43, 63, 59, 107, 52, 86, 77
and the 10 afternoon waiting times (y) are: 45, 62, 52, 72, 81, 88, 64, 75, 59, 70. Here n = m = 10,
x̄ = 68.9, ȳ = 66.8, s2

x = 538.22 and s2
y = 171.29. From this we calculate,

s2 =
(n− 1)s2

x + (m− 1)s2
y

n+m− 2
= 354.8,
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tobs =

√
nm

n+m

(x̄− ȳ)

s
= 0.25.

This is not significant as the critical value h = qt(0.975,18)= 2.10 is larger in absolute value than
0.25. This can be achieved by calling the R function t.test as follows:

y <- read.csv("servicetime.csv", head=T)

t.test(y$AM, y$PM)
It automatically calculates the test statistic as 0.249 and a p-value of 0.8067. It also obtains

the 95% CI given by (–15.94, 20.14).

4.9.3 Paired t-test

Sometimes the assumption that the X and Y variables are independent of each other is unlikely
to be valid, due to the design of the study. The most common example of this is where n = m
and data are paired. For example, a measurement has been made on patients before treatment (X)
and then again on the same set of patients after treatment (Y ). Recall the weight gain example is
exactly of this type. In such examples, we proceed by computing data on the differences

zi = xi − yi, i = 1, . . . , n

and modelling these differences as observations of i.i.d. N(µz, σ
2
Z) variables Z1, . . . , Zn. Then, a

test of the hypothesis µX = µY is achieved by testing µZ = 0, which is just a standard (one sample)
t-test, as described previously.

♥ Example 74 Paired t-test Water-quality researchers wish to measure the biomass to chloro-
phyll ratio for phytoplankton (in milligrams per litre of water). There are two possible tests, one
less expensive than the other. To see whether the two tests give the same results, ten water samples
were taken and each was measured both ways. The results are as follows:

Test 1 (x) 45.9 57.6 54.9 38.7 35.7 39.2 45.9 43.2 45.4 54.8
Test 2 (y) 48.2 64.2 56.8 47.2 43.7 45.7 53.0 52.0 45.1 57.5

To test the null-hypothesis
H0 : µZ = 0 against H1 : µZ 6= 0

we use the test statistic t =
√
n z̄
sz
, where s2

z = 1
n−1

∑n
i=1(zi − z̄)2.

Confidence interval for µZ .
From the hypothesis testing, a 100(1 − α)% confidence interval is given by z̄ ± h sz√

n
, where h is

the critical value of the t distribution with n − 1 degrees of freedom. In R we perform the test as
follows:

x <- c(45.9, 57.6, 54.9, 38.7, 35.7, 39.2, 45.9, 43.2, 45.4, 54.8)

y <- c(48.2, 64.2, 56.8, 47.2, 43.7, 45.7, 53.0, 52.0, 45.1, 57.5)

t.test(x, y, paired=T)

This gives the test statistic tobs = −5.0778 with a df of 9 and a p-value = 0.0006649. Thus we
reject the null hypothesis. The associated 95% CI is (–7.53, –2.89), printed by R.

Interpretation: The values of the second test are significantly higher than the ones of the first
test, and so the second test cannot be considered as a replacement for the first.
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4.9.4 Take home points

We have introduced the two-sample t-test for testing whether the distributions of two independent
samples of data are identical. We have also learned about the paired t-test, which we use in
circumstances where the assumption of independence is not valid.

4.10 Lecture 28: Data collection and design of experiments

4.10.1 Lecture mission

The primary purpose of this lecture is to consider issues around the sampling of data in scientific
experiments. We return to the question of how should we collect our data? For example, suppose
I am interested in estimating the percentage of grammar school students in Southampton and I do
not have access to student’s personal data (due to data protection), but assume that I do have a list
of all students and their university contact information. How can I sample effectively to estimate
the proportion, which is a population characteristic? In a medical experiment, suppose the aim is
to prove that the new drug is better than the existing drug for treating a mental health disorder.
How should we select patients to allocate the drugs, often called treatments in statistical jargon?
Obviously it would be wrong to administer the new drug to the male individuals and the old to the
females as any difference between the effects of the new and existing drugs will be completely mixed-
up with the difference between the effect of the sexes. Hence, effective sampling techniques and
optimal design of the data collection experiments are necessary to make valid statistical inferences.
This lecture will discuss several methods for statistical data collection.

4.10.2 Simple random sampling

Returning to the problem of estimating the proportion of grammar school students, we must aim to
give some positive probability to selection of the population of Southampton students so that my
sample is representative of the population. This is called probability sampling. A sampling scheme
is called simple random sampling, SRS, if it gives the same probability of selection for each member
of the population. There are two kinds of SRS depending on whether we select the individuals one
by one with or without returning the sampled individuals to the population. When we return the
selected individuals immediately back to the population, we perform simple random sampling with
replacement or SRSWR, and if we do not return the sampled individuals back, we perform simple
random sampling without replacement or SRSWOR. The UK National Lottery draw of six numbers
each week is an example of SRSWOR.

Suppose there are N individuals in the population and we are drawing a sample of n individuals.
In SRSWR, the same unit of the population may occur more than once in the sample; there are
Nn possible samples (using multiplication rules of counting), and each of these samples has equal
chance of 1/Nn to materialise. In the case of SRSWOR, at the rth drawing (r = 1, . . . , n) there
are N − r+ 1 individuals in the population to sample from. All of these individuals are given equal
probability of inclusion in the sample. Here no member of the population can occur more than
once in the sample. There are NCn possible samples and each has equal probability of inclusion
1/NCn. This is also justified as at the rth stage one is to choose from N − r + 1 individuals one
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of the n− r+ 1 individuals to be included in the sample which have not yet been chosen in earlier
drawings. In this case too, the probability that any specified individual, say the ith, is selected at
any drawing, say the kth drawing, is:

N − 1

N
× N − 2

N − 1
× · · · × N − k + 1

N − k + 2

1

N − k + 1
=

1

N

as in the case of the SRSWR. It is obvious that if one takes n individuals all at a time from the
population, giving equal probability to each of the NCn combinations of n members out of the N
members in the population, one will still have SRSWOR.

How can we draw random samples?
A quick method is drawing numbers out of hat. But this is cumbersome and manual. In practice,
we use random number series to draw samples at random. A random sampling number series is an
arrangement, which may be looked upon either as linear or rectangular, in which each place has
been filled in with one of the digits 0, 1, . . . , 9. The digit occupying any place is selected at random
from these 10 digits and independently of the digits occurring in other positions. Different random
number series are available in books and computers. In R we can easily use the sample command
to draw random samples either using SRSWR or SRSWOR. For example, suppose the problem is
to select 50 students out of the 200 in this class. In this experiment, I shall number the students
1 to 200 in any way possible, e.g. alphabetically by surname. I will then issue the command
sample(200, size=50) for SRSWOR and sample(200, size=50, replace=T) for SRSWR.

There are a huge number of considerations and concepts to design good surveys avoiding bias.
There may be response bias, observational bias, biases from non-response, interviewer bias, bias
due to defective sampling technique, bias due to substitution, bias due to faulty differentiation of
sampling units and so on. However, discussion of such topics is beyond the scope and syllabus of
this module.

4.10.3 Design of experiments

An experiment is a means of getting an answer to the question that the experimenter has in mind.
This may be to decide which of the several pain-relieving tablets that are available over the counter
is the most effective or equally effective. An experiment may be conducted to study and compare
the British and Chinese methods of teaching mathematics in schools. In planning an experiment,
we clearly state our objectives and formulate the hypotheses we want to test. We now give some
key definitions.

Treatment. The different procedures under comparison in an experiment are the different treat-
ments. For example, in a chemical engineering experiment different factors such as Temperature
(T), Concentration (C) and Catalyst (K) may affect the yield value from the experiment.

Experimental unit. An experimental unit is the material to which the treatment is applied and
on which the variable under study is measured. In a human experiment in which the treatment
affects the individual, the individual will be the experimental unit.
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Design of experiments is a systematic and rigorous approach to problem-solving in many disci-
plines such as engineering, medicine etc. that applies principles and techniques at the data collection
stage, so as to ensure valid inferences for the hypotheses of interest.

Three principles of experimental design

1. Randomisation. This is necessary to draw valid conclusions and minimise bias. In an ex-
periment to compare two pain-relief tablets we should allocate the tablets randomly among
participants – not one tablet to the boys and the other to the girls.

2. Replication. A treatment is repeated a number of times in order to obtain a more reliable
estimate than a single observation. In an experiment to compare two diets for children, we
can plan the experiment so that no particular diet is favoured in the experiment, i.e. each
diet is applied approximately equally among all types of children (boys, girls, their ethnicity
etc.).

The most effective way to increase the precision of an experiment is to increase the number of
replications. Remember, Var(X̄) = σ2/n, which says that the standard deviation decreases
proportional to the square root of the number of replications. However, replication beyond a
limit may be impractical due to cost and other considerations.

3. Local control. In the simplest case of local control, the experimental units are divided into
homogeneous groups or blocks. The variation among these blocks is eliminated from the error
and thereby efficiency is increased. These considerations lead to the topic of construction of
block designs, where random allocation of treatments to the experimental units may be re-
stricted in different ways in order to control experimental error. Another means of controlling
error is through the use of confounded designs where the number of treatment combinations
is very large, e.g. in factorial experiments.

Factorial experiment A thorough discussion of construction of block designs and factorial ex-
periments is beyond the scope of this module. However, these topics are studied in the third-year
module MATH3014: Design of Experiments. In the remainder of this lecture, we simply discuss an
example of a factorial experiment and how to estimate different effects.

♥ Example 75 A three factor experiment Chemical engineers wanted to investigate the
yield, the value of the outcome of the experiment which is often called the response, from a chemical
process. They identified three factors that might affect the yield: Temperature (T), Concentration
(C) and catalyst (K), with levels as follows:

Temperature (T ) 160C 180C
Concentration (C) 20% 40%
Catalyst (K) A B

To investigate how factors jointly influence the response, they should be investigated in an
experiment in which they are all varied. Even when there are no factors that interact, a factorial
experiment gives greater accuracy. Hence they are widely used in science, agriculture and industry.
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Here we will consider factorial experiments in which each factor is used at only two levels. This is
a very common form of experiment, especially when many factors are to be investigated. We will
code the levels of each factor as 0 (low) and 1 (high). Each of the 8 combinations of the factor
levels were used in the experiment. Thus the treatments in standard order were:

000, 001, 010, 011, 100, 101, 110, 111.

Each treatment was used in the manufacture of one batch of the chemical and the yield (amount
in grams of chemical produced) was recorded. Before the experiment was run, a decision had to
be made on the order in which the treatments would be run. To avoid any unknown feature that
changes with time being confounded with the effects of interest, a random ordering was used; see
below. The response data are also shown in the table.

Standard order Randomised order T C K Yield Code
1 6 0 0 0 60 000
2 2 0 0 1 52 001
3 5 0 1 0 54 010
4 8 0 1 1 45 011
5 7 1 0 0 72 100
6 4 1 0 1 83 101
7 3 1 1 0 68 110
8 1 1 1 1 80 111

Questions of interest

1. How much is the response changed when the level of one factor is changed from high to low?

2. Does this change in response depend on the level of another factor?

For simplicity, we first consider the case of two factors only and call them factors A and B, each
having two levels, ‘low’ (0) and ‘high’ (1). The four treatments in the experiment are then 00, 01,
10, 11, and suppose that we have just one response measured for each treatment combination. We
denote the four response values by yield00, yield01, yield10 and yield11.

Main effects

For this particular experiment, we can answer the first question by measuring the difference between
the average yields at the two levels of A:

The average yield at the high level of A is 1
2(yield11 + yield10).

The average yield at the low level of A is 1
2(yield01 + yield00).

These are represented by the open stars in the Figure 4.1. The main effect of A is defined as
the difference between these two averages, that is

A =
1

2
(yield11 + yield10)− 1

2
(yield01 + yield00)

=
1

2
(yield11 + yield10 − yield01 − yield00),
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Figure 1:  Illustration of the yields in a two-factor experiment. 
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Figure 2:  Illustration of the yields in a two-factor 
experiment with no interaction. 

Figure 4.1: Figure showing factorial effects.

which is represented by the difference between the two open stars in Figure 4.1. Notice that A is
used to denote the main effect of a factor as well as its name. This is a common practice. This
quantity measures how much the response changes when factor A is changed from its low to its
high level, averaged over the levels of factor B.

Similarly, the main effect of B is given by

B =
1

2
(yield11 + yield01)− 1

2
(yield10 + yield00)

=
1

2
(yield11 − yield10 + yield01 − yield00),

which is represented by the difference between the two black stars in Figure 4.1.

We now consider question 2, that is, whether this change in response is consistent across the
two levels of factor A.

Interaction between factors A and B

Case 1: No Interaction
When the effect of factor B at a given level of A (difference between the two black stars) is the

same, regardless of the level of A, the two factors A and B are said not to interact with each other.
The response lines are parallel in Figure 4.2.

When the effect of factor B (difference between the two black stars) is different from the
corresponding differences for different levels of A, the two factors A and B are said to interact with
each other. The response lines are not parallel in Figure 4.3

Computation of Interaction Effect

We define the interaction between factors A and B as one half of the differences between

• the effect of changing B at the high level of A, (yield11 − yield10), and
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experiment with interaction. Figure 4.3: Plot showing interaction effects.

• the effect of changing B at the low level of A, (yield01 − yield00), that is

AB =
1

2
(yield11 − yield10 − yield01 + yield00).

• If the lines are parallel then this interaction, AB, will be small.

• If we interchange the roles of A and B in this expression we obtain the same formula.

• Definition: The main effects and interactions are known collectively as the factorial effects.

• Important note: When there is a large interaction between two factors, the two main effects
cannot be interpreted separately.

4.10.4 Take home points

In this lecture we have discussed techniques of random sampling and the main ideas of design of
experiments. A three factor experiment example has demonstrated estimation of the main effects
of the factors and their interactions. Further analysis using R can be performed by following the
yield example online. These ideas will be followed up in the third year module Math3014: Design
of Experiments.



Appendix A

Mathematical Concepts Needed in
MATH1024

During the first week’s workshop and problem class you are asked to go through this. Please try
the proofs/exercises as well and verify that your solutions are correct by talking to a workshop
assistant. Solutions to some of the exercises are given at the end of this chapter and some others
are discussed in lectures.

A.1 Discrete sums

1. We can prove by induction that:

1 + 2 + · · ·+ n =
n(n+ 1)

2

and

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

for a positive natural number n. You do not need to prove these, but you should try to
remember the formulae.

2. Consider a set of numbers x1, . . . , xn and

x =
1

n

n∑
i=1

xi.

(a) Prove that
∑n

i=1(xi − x) = 0.

(b) Prove that
∑n

i=1(xi − x)2 =
∑n

i=1 x
2
i − nx2.

(c) Prove that for any number a,

n∑
i=1

(xi − a)2 =
n∑
i=1

(xi − x)2 + n(x− a)2.

Hence argue that
∑n

i=1(xi − a)2 is minimised at a = x.

119
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A.2 Derivative method of finding minima or maxima.

1. To optimise f(x), solve the equation f ′(x) = 0.

2. See if f ′′(x) evaluated at the solution is positive or negative.

3. The function f(x) attains a local minimum if the sign is positive.

4. The function f(x) attains a local maximum at the solution if the sign is negative.

5. There is neither a minima nor a maxima if the second derivative is zero at the solution. Such
a point is called a point of inflection.

A.3 Counting and combinatorics

For non-negative integers n and k such that k ≤ n, the number of combinations

nCk ≡
(
n

k

)
=

n!

k! (n− k)!
.

Prove that (
n

k

)
=
n× (n− 1)× · · · × (n− k + 1)

1× 2× 3× · · · × k.

Proof We have: (
n
k

)
= n!

k! (n−k)!

= 1
k!

1×2×3×···×(n−k)×(n−k+1)×···×(n−1)×n
1×2×3×···×(n−k)

= 1
k! [(n− k + 1)× · · · × (n− 1)× n] .

Hence the proof is complete. This enables us to calculate
(

6
2

)
= 6×5

1×2 = 15. In general for calculating(
n
k

)
:

the numerator is the multiplication of k terms starting with n and counting down,
and the denominator is the multiplication of the first k positive integers.

With 0! = 1 and k! = 1× 2× 3× · · · × k, and the above formula, prove the following:

1. nCk = nCn−k. [This means number of ways of choosing k items out of n items is same as the
number of ways of choosing n− k items out of n items. Why is this meaningful?]

2.
(
n+1
k

)
=
(
n
k

)
+
(
n
k−1

)
.

3. For each of (1) and (2), state the meaning of these equalities in terms of the numbers of
selections of k items without replacement.
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A.4 Binomial theorem

By mathematical induction it can be proved that:

(a+ b)n = bn +

(
n

1

)
abn−1 + · · ·+

(
n

x

)
axbn−x + · · ·+ an

for any numbers a and b and a positive integer n. This is called the binomial theorem. This can
be used to prove the following:

(1− p)n +

(
n

1

)
p(1− p)n−1 + · · ·+

(
n

x

)
px(1− p)n−x + · · ·+ pn = (p+ 1− p)n = 1.

Thus
n∑
x=0

(
n

x

)
px(1− p)n−x = 1,

which also implies:

n−1∑
x=0

(
n− 1

x

)
px(1− p)n−1−x = 1,

for n > 1.

Exercise 1. Hard Show that

∑
x+y=z

(
m

x

)(
n

y

)
=

(
m+ n

z

)
,

where the above sum is also over all possible integer values of x and y such that 0 ≤ x ≤ m and
0 ≤ y ≤ n.

Hint Consider the identity

(1 + t)m(1 + t)n = (1 + t)m+n

and compare the coefficients of tm+n on both sides. If this is hard, please try small values of m and
n, e.g. 2, 3 and see what happens.

Exercise 2. Hard Show that if X ∼ Poisson(λ), Y ∼ Poisson(µ) and X and Y are independent
random variables then

X + Y ∼ Poisson(λ+ µ).

Suppose X ∼ Poisson(λ), Y ∼ Poisson(µ), and let Z = X + Y . To determine the distribution



A Mathematical Concepts Needed in MATH1024 122

of Z, we need to find P (Z = z) for all z ≥ 0.

P{Z = z} = P{X + Y = z}

=

∞∑
x=0

P{X + Y = z |X = x}P{X = x}

=
z∑

x=0

P{Y = z − x}P{X = x}

=

z∑
x=0

(
e−µµz−x/(z − x)!

) (
e−λλx/x!

)
= e−µ−λ

z∑
x=0

1

x! (z − x)!
λxµz−x

=
e−(λ+µ)

z!

z∑
x=0

z!

x! (z − x)!
λxµz−x

=
e−(λ+µ)

z!

z∑
x=0

(
z

x

)
λxµz−x

=
e−(λ+µ)

z!
(µ+ λ)z (binomial sum).

Thus Z ∼ Poisson(λ+µ) since the above is the probability mass function of the Poisson distribution
with parameter λ+ µ.

A.5 Negative binomial series

1. Sum of a finite geometric series with common ratio r:

k∑
x=0

rx = 1 + r + r2 + · · ·+ rk =
1− rk+1

1− r
.

The power of r, k + 1, in the formula for the sum is the number of terms.

2. When k →∞ we can evaluate the sum only when |r| < 1. In that case

∞∑
x=0

rx =
1

1− r
[rk+1 → 0 as k →∞ for |r| < 1].

3. For a positive n and |x| < 1, the negative binomial series is given by:

(1−x)−n = 1+nx+
1

2
n(n+1)x2+

1

6
n(n+1)(n+2)x3+· · ·+n(n+ 1)(n+ 2) · · · (n+ k − 1)

k!
xk+· · ·
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With n = 2 the general term is given by:

n(n+ 1)(n+ 2)(n+ k − 1)

k!
=

2× 3× 4× · · · × (2 + k − 1)

k!
= k + 1.

Using this and by taking x = q we prove that:

1 + 2q + 3q2 + 4q3 + · · · = (1− q)−2.

A.6 Logarithm and the exponential function

A.6.1 Logarithm

From this point onwards, in this module the symbol log will always mean the natural logarithm
or the log to the base e. We just need to remember the following basic formulae for two suitable
numbers a and b.

1. log(ab) = log(a) + log(b) [Log of the product is the sum of the logs]

2. log
(
a
b

)
= log(a)− log(b) [Log of the ratio is the difference of the logs]

3. log
(
ab
)

= b log(a) or equivalently ab = eb log(a).

There is no simple formula for log(a+ b) or log(a− b). Now try the following exercises:

1. Show that log
(
xeax

3+3x+b
)

= log(x) + ax3 + 3x+ b.

2. Show that e2 log(x) = x2.

3. Satisfy yourself that log(x1x2 · · ·xn) =
∑n

i=1 log(xi).

A.6.2 The exponential function

The exponential function is defined for any finite number a:

exp(a) ≡ ea = lim
n→∞

(
1 +

a

n

)n
= 1 + a+

a2

2!
+
a3

3!
+ · · ·

where for a positive integer k, k! = 1 × 2 × 3 × · · · × k. Hence, 2! = 2, 3! = 6 and so on. By
convention we use 0! = 1. Now try the following exercises:

1. Satisfy yourself that limn→∞

(
1− x2

n

)n
= e−x

2
.

2. Satisfy yourself that
∑∞

x=0 e
−λ λx

x! = 1.
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A.7 Integration

A.7.1 Fundamental theorem of calculus

We need to remember (but not prove) the fundamental theorem of calculus:

F (x) =

∫ x

−∞
f(u)du implies f(x) =

dF (x)

dx

For example, consider the pair

f(x) = λe−λx, F (x) = 1− e−λx.

Satisfy yourself that the fundamental theorem of calculus holds.

A.7.2 Even and odd functions

A function f(x) is said to be an even function if

f(x) = f(−x)

for all possible values of x. For example, f(x) = e−
x2

2 is an even function for real x.

A function f(x) is said to be an odd function if

f(x) = −f(−x)

for all possible values of x. For example, f(x) = xe−
x2

2 is an odd function for real x. It can be
proved that:

for any real positive value of a,∫ a

−a
f(x)dx =

{
2
∫ a

0 f(x)dx if f(x) is an even function of x
0 if f(x) is an odd function of x.

The proof of this is not required. Here is an example of each.∫ a
−a f(x)dx =

∫ a
−a x

2dx

= x3

3

∣∣∣a
−a

= 1
3(a3 + a3)

= 2
3a

3

= 2
∫ a

0 x
2dx.

Similarly, f(x) = x is an odd function of x and consequently,
∫ a
−a f(x)dx = 0 for any a.
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A.7.3 Improper integral and the gamma function

An integral such as
∫∞

0 f(x)dx is called an improper integral and it is defined as∫ ∞
0

f(x)dx = lim
a→∞

∫ a

0
f(x)dx,

if the limit exists. For example, it is easy to see that∫ ∞
0

e−xdx = 1.

The gamma function is an improper integral defined by

Γ(α) =

∫ ∞
0

xα−1e−xdx, α > 0.

It can be shown that Γ(α) exists and is finite for all real values of α > 0. Obviously it is non-negative
since it is the integral of a non-negative function. It is easy to see that

Γ(1) = 1

since
∫∞

0 e−xdx = 1. The argument α enters only through the power of the dummy (x). Remember
this, as we will have to recognise many gamma integrals. Important points are:

1. It is an integral from 0 to ∞.

2. The integrand must be of the form dummy (x) to the power of the parameter (α) minus one
(xα−1) multiplied by e to the power of the negative dummy (e−x).

3. The parameter (α) must be greater than zero.

Using integration by parts, we can prove the reduction formula:

Γ(α) = (α− 1)Γ(α− 1), for α > 1.

This formula reads:

Gamma(parameter) = (parameter – 1) Gamma(parameter – 1)

provided parameter > 1. The condition α > 1 is required to ensure that Γ(α − 1) exists. The
proof of this is not required, but can be proved easily by integration by parts by integrating the
function e−x and differentiating the function xα−1. For an integer n, by repeatedly applying the
reduction formula and Γ(1) = 1, show that

Γ(n) = (n− 1)!.

Thus Γ(5) = 4! = 24. You can guess how rapidly the gamma function increases! The last formula
we need to remember for our purposes is:
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Γ
(

1
2

)
=
√
π.

Proof of this is complicated and not required for this module. Using this we can calculate

Γ

(
3

2

)
=

(
3

2
− 1

)
Γ
(

1
2

)
=

√
π

2
.

Now we can easily tackle integrals such as the following:

1. For fun try to evaluate
∫∞

0 xα−1e−βx dx for α > 0 and β > 0.

2. Prove that
∫∞

0 xe−λx dx = 1
λ2

.

3. Prove that
∫∞

0 x2e−λx dx = 2
λ3

.

Solution to the combinatorics problems.

1.
(
n

n−k
)

= n!
(n−k)!(n−[n−k])! = n!

(n−k)!k! =
(
n
k

)
2.

RHS =
n!

k!(n− k)!
+

n!

(k − 1)!(n− [k − 1])!

=
n!

k!(n− [k − 1])!
[n− (k − 1) + k]

=
n![n+ 1]

k!(n− [k − 1])!

=
(n+ 1)!

k!(n+ 1− k)!

= LHS

3. (a) Number of selections (without replacement) of k objects from n is exactly the same as
the number of selections of (n− k) objects from n.

(b) The number of selections of k items from (n+ 1) consists of:

• The number of selections that include the (n+ 1)th item. There are
(
n
k−1

)
of these.

• The number of selections that exclude the (n+ 1)th item. There are
(
n
k

)
of these.



Appendix B

Worked Examples

B.1 Probability examples

76. [Conditional probability] A chest has three drawers. The first contains two gold coins, the
second contains a gold and silver coin and the third has two silver coins. A drawer is chosen
at random and from it a coin is chosen at random. What is the probability that the coin still
remaining in the chosen drawer is gold given that the coin chosen is silver?

77. [Conditional probability] Consider a family with two children. If each child is as likely to be
a boy as a girl, what is the probability that both children are boys

(a) given that the older child is a boy,

(b) given that at least one of the children is a boy?

78. [Conditional probability] 10% of the boys in a school are left-handed. Of those who are
left-handed, 80% are left-footed; of those who are right-handed, 15% are left-footed. If a boy,
selected at random, is left-footed, use Bayes Theorem to calculate the probability that he is
left-handed.

79. [Bayes Theorem] A car insurance company classifies each driver as a low risk, a medium risk
or a high risk. Of those currently insured, 30% are low risks, 50% are medium risks and 20%
are high risks. In any given year, the probability that a driver will have at least one accident
is 0.1 for a low risk, 0.3 for a medium risk, and 0.5 for a high risk. What is the probability
that a randomly selected driver insured by this company has at least one accident during the
next year? What is the probability that a driver who had an accident (already occurred) was
previously classified as a low risk?

Let

B1 = {a randomly selected driver is a low risk},
B2 = {a randomly selected driver is a medium risk},
B3 = {a randomly selected driver is a high risk},
A = {a randomly selected driver has at least one accident during the year}.

127
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Note that B1, B2, B3 are mutually exclusive and exhaustive. Find P{A} and P{B1|A}.

80. [Independent events] The probability that Jane can solve a certain problem is 0.4 and that
Alice can solve it is 0.3. If they both try independently, what is the probability that it is
solved?

81. [Random variable] A fair die is tossed twice. Let X equal the first score plus the second
score. Determine

(a) the probability function of X,

(b) the cumulative distribution function of X and draw its graph.

82. [Random variable] A coin is tossed three times. If X denotes the number of heads minus
the number of tails, find the probability function of X and draw a graph of its cumulative
distribution function when

(a) the coin is fair,

(b) the coin is biased so that P{H} = 3
5 and P{T} = 2

5 .

83. [Expectation and variance] The random variable X has probability function

px =

{
1
14(1 + x) if x = 1, 2, 3, 4
0 otherwise.

Find the mean and variance of X.

84. [Expectation and variance] Let X denote the score when a fair die is thrown. Determine the
probability function of X and find its mean and variance.

85. [Expectation and variance] Two fair dice are tossed and X equals the larger of the two scores
obtained. Find the probability function of X and determine E(X).

86. [Expectation and variance] The random variable X is uniformly distributed on the integers
0,±1,±2, . . . ,±n, i.e.

px =

{
1

2n+1 if x = 0,±1,±2, . . . ,±n
0 otherwise.

Obtain expressions for the mean and variance in terms of n. Given that the variance is 10,
find n.

87. [Poisson distribution] The number of incoming calls at a switchboard in one hour is Poisson
distributed with mean λ = 8. The numbers arriving in non-overlapping time intervals are
statistically independent. Find the probability that in 10 non-overlapping one hour periods
at least two of the periods have at least 15 calls.

88. [Continuous distribution] The random variable X has probability density function

f(x) =

{
kx2(1− x) if 0 ≤ x ≤ 1
0 otherwise.
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(a) Find the value of k.

(b) Find the probability that X lies in the range (0, 1
2).

(c) In 100 independent observations of X, how many on average will fall in the range (0, 1
2)?

89. [Exponential distribution] The random variable X has probability density function

f(x) =

{
λe−λx if x ≥ 0
0 otherwise.

Find expressions for

(a) the mean,

(b) the standard deviation σ,

(c) the mode,

(d) the median.

Show that the interquartile range equals σ log(3).

90. [Cauchy distribution] A random variable X is said to have a Cauchy distribution if its
probability density function is given by

f(x) =
1

π(1 + x2)
,−∞ < x < +∞.

(a) Verify that it is a valid probability density function and sketch its graph.

(b) Find the cumulative distribution function F (x).

(c) Find P (−1 ≤ X ≤ 1).

91. [Continuous distribution] The probability density function of X has the form

f(x) =

{
a+ bx+ cx2 if 0 ≤ x ≤ 4
0 otherwise.

If E(X) = 2 and Var(X) = 12
5 , determine the values of a, b and c.

B.2 Solutions: Probability examples

76. Define events

GG : the chosen drawer has two gold coins,

GS : the chosen drawer has one gold and one silver coin,

SS : the chosen drawer has two silver coins,

S : the coin chosen is silver.

We require P{GS|S}. By the Bayes Theorem

P{GS|S} =
P{S|GS}P{GS}

P{S|GG}P{GG}+ P{S|GS}P{GS}+ P{S|SS}P{SS}

=
1
2 ×

1
3

0× 1
3 + 1

2 ×
1
3 + 1× 1

3

=
1

3
.
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77. We assume that the sexes of the children are independent.

(a)

P{both boys|older is a boy} =
P{both boys and older is a boy}

P{older is a boy}

=
P{both boys}

P{older is a boy}
=

1/4

1/2
=

1

2
.

(b)

P{both boys|at least one boy} =
P{both boys and at least one boy}

P{at least one boy}

=
P{both boys}

1− P{both girls}
=

1/4

1− 1/4
=

1

3
.

78. In the obvious notation

P{LH|LF} =
P{LF |LH}P (LH)

P{LF |LH}P (LH) + P{LF |RH}P{RH}

=
0.8× 0.1

0.8× 0.1 + 0.15× 0.9
=

16

43
.

79. Here we have

P{B1} = 0.3 P{A|B1} = 0.1
P{B2} = 0.5 P{A|B2} = 0.3
P{B3} = 0.2 P{A|B3} = 0.5

Hence
P{A} = P{B1}P{A|B1}+ P{B2}P{A|B2}+ P{B3}P{A|B3}

= 0.3× 0.1 + 0.5× 0.3 + 0.2× 0.5
= 0.28

Now by the Bayes theorem,

P{B1|A} = P{B1}P{A|B1}
P{A}

= 0.3×0.1
0.28

= 3
28 .

80.

P{problem not solved} = P{Jane fails and Alice fails}
= P{Jane fails}P{Alice fails} (by independence)

= (1− 0.4)(1− 0.3)

= 0.42.

Hence P{problem solved} = 0.58.
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81. The sample space is

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

(a) Working along the cross-diagonals we find by enumeration that X has the following
probability function

x 2 3 4 5 6 7 8 9 10 11 12

px
1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

More concisely,

px =

{
6−|x−7|

36 if x = 2, . . . , 12

0 otherwise.

(b)

F (x) =


0 if x < 2
1
36 if 2 ≤ x < 3
3
36 if 3 ≤ x < 4, etc.

Using the formula
∑n

i=1 i = 1
2n(n+ 1) we find that the cumulative distribution function

F (x) can be written concisely in the form

F (x) =


0 if x < 2
(6+[x−7])(7+[x−7])

72 if 2 ≤ x < 7
21
36 + [x−7](11−[x−7])

72 if 7 ≤ x < 12

1 if x ≥ 12,

where [x] denotes the integral part of x.

For example, F (3.5) = (6−4)(7−4)
72 = 3

36 , F (10.5) = 21
36 + 3(11−3)

72 = 33
36 .
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82. The possibilities are

Sequence X Prob. in (a) Prob. in (b)
HHH 3 1/8 (3/5)3

HHT 1 1/8 (3/5)2(2/5)
HTH 1 1/8 (3/5)2(2/5)
THH 1 1/8 (3/5)2(2/5)
HTT -1 1/8 (3/5)(2/5)2

THT -1 1/8 (3/5)(2/5)2

TTH -1 1/8 (3/5)(2/5)2

TTT -3 1/8 (2/5)3

The probability functions of the two cases are therefore

(a)

x -3 -1 1 3

px
1
8

3
8

3
8

1
8

(b)

x -3 -1 1 3

px
8

125
36
125

54
125

27
125

The cumulative distribution functions are

(a)

F (x) =



0 if x < −3
1
8 if − 3 ≤ x < −1
1
2 if − 1 ≤ x < 1
7
8 if 1 ≤ x < 3

1 if x ≥ 3.

(b)

F (x) =



0 if x < −3
8

125 if − 3 ≤ x < −1
44
125 if − 1 ≤ x < 1
98
125 if 1 ≤ x < 3

1 if x ≥ 3.
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83. p1 = 2
14 , p2 = 3

14 , p3 = 4
14 , p4 = 5

14 .

E(X) =
∑
x

xpx

= 1× 2

14
+ 2× 3

14
+ 3× 4

14
+ 4× 5

14
=

20

7
.

E(X2) = 1× 2

14
+ 4× 3

14
+ 9× 4

14
+ 16× 5

14
=

65

7
.

Therefore Var(X) = E(X2)− [E(X)]2

=
65

7
− 400

49
=

55

49
.

84. The probability function of X is

x 1 2 3 4 5 6

px
1
6

1
6

1
6

1
6

1
6

1
6

E(X) =
∑
x

xpx

=
1

6
× 1 +

1

6
× 2 +

1

6
× 3 +

1

6
× 4 +

1

6
× 5 +

1

6
× 6

=
7

2
.

Var(X) = E(X2)− [E(X)]2

=
1

6
× 1 +

1

6
× 4 +

1

6
× 9 +

1

6
× 16 +

1

6
× 25 +

1

6
× 36−

(
7

2

)2

=
35

12
.

85. Using the sample space for Question 5, we find that X has probability function

x 1 2 3 4 5 6

px
1
36

3
36

5
36

7
36

9
36

11
36
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E(X) =
1

36
× 1 +

3

36
× 2 +

5

36
× 3 +

7

36
× 4 +

9

36
× 5 +

11

36
× 6

=
161

36
.

86.

E(X) =
∑
x

xpx =
1

2n+ 1

n∑
x=−n

x = 0.

E(X2) =
∑
x

x2px =
1

2n+ 1

n∑
x=−n

x2

=
2

(2n+ 1)

n(n+ 1)(2n+ 1)

6
=
n(n+ 1)

3
.

Therefore Var(X) = E(X2)− [E(X)]2 =
n(n+ 1)

3
.

If Var(X) = 10,

then
n(n+ 1)

3
= 10

n2 + n− 30 = 0.

Therefore n = 5 (rejecting − 6).

87. Let X be the number of calls arriving in an hour and let P (X ≥ 15) = p.
Then Y , the number of times out of 10 that X ≥ 15, is B(n, p) with n = 10 and p =
1− 0.98274 = 0.01726.

Therefore P (Y ≥ 2) = 1− P (Y ≤ 1)

= 1− ((0.98274)10 + 10(0.01726)(0.98274)9)

= 0.01223.

88. (a) k
∫ 1

0 x
2(1− x) dx = 1, which implies that k = 12.

(b) P (0 < X < 1
2) = 12

∫ 1/2
0 x2(1− x) dx = 5

16 .

(c) The number of observations lying in the interval (0, 1
2) is binomially distributed with

parameters n = 100 and p = 5
16 , so that

Mean number of observations in

(
0,

1

2

)
= np = 31.25.

89. (a)

E(X) = λ

∫ ∞
0

xe−λx dx

= [−xe−λx]∞0 +

∫ ∞
0

e−λx dx (integrating by parts)

= 0− 1

λ
[e−λx]∞0 =

1

λ
.
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(b)

E(X2) = λ

∫ ∞
0

x2e−λx dx

= [−x2e−λx]∞0 + 2

∫ ∞
0

xe−λx dx

= 0 +
2

λ2
(using the first result)

=
2

λ2

Therefore Var(X) = 2
λ2
− 1

λ2
= 1

λ2
and σ =

√
Var(X) = 1

λ .

(c) The mode is x = 0 since this value maximises f(x).

(d) The median m is given by∫ m

0
λe−λx dx =

1

2
, which implies that m =

1

λ
log(2).

If u and l denote the upper and lower quartiles,∫ u

0
λe−λx dx =

3

4
and

∫ l

0
λe−λx dx =

1

4
,

which implies that u = 1
λ log(4) and l = 1

λ log
(

4
3

)
.

The interquartile range equals

1

λ
log(4)− 1

λ
log

(
4

3

)
=

1

λ
log(3) = σ log(3).

90. (a) We must show that
∫∞
−∞ f(x) dx = 1 and f(x) ≥ 0 for all x.

Now
∫∞
−∞

dx
π(1+x2)

= 1
π [tan−1(x)]∞−∞ = 1

π (π2 − (−π2 )) = 1.

Also 1
π(1+x2)

≥ 0 for all x.

(b) F (x) = 1
π

∫ x
−∞

dy
1+y2

= 1
π [tan−1(y)]x−∞ = 1

π (tan−1(x) + π
2 ).

(c) P (−1 ≤ X ≤ 1) = F (1)− F (−1) = 1
π (tan−1(1) + π

2 )− 1
π (tan−1(−1) + π

2 ) = 1
2 .
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91. We are given that∫ ∞
−∞

xf(x) dx =

∫ 4

0
(ax+ bx2 + cx3) dx = 8a+

64b

3
+ 64c = E(X) = 2

and

∫ ∞
−∞

x2f(x) dx =

∫ 4

0
(ax2 + bx3 + cx4) dx =

64a

3
+ 64b+

1024c

5

= Var(X) + [E(X)]2 =
32

5
.

Also

∫ ∞
−∞

f(x) dx =

∫ 4

0
(a+ bx+ cx2) dx = 4a+ 8b+

64c

3
= 1.

Solving these equations gives a = 3
4 , b = −3

4 and c = 3
16 .

Therefore f(x) = 3
16(x− 2)2, 0 ≤ x ≤ 4.

B.3 Statistics examples

92. [Estimation] A random sample of 10 boys and 10 girls from a large sixth form college were
weighed with the following results.

Boy’s weight (kg) 77 67 65 60 71 62 67 58 65 81

Girl’s weight (kg) 42 57 46 49 64 61 52 50 44 59

Find

(a) unbiased estimates of µb and σ2
b , the mean and variance of the weights of the boys;

(b) unbiased estimates of µg and σ2
g , the mean and variance of the weights of the girls;

(c) an unbiased estimate of µb − µg.

Assuming that σ2
b = σ2

g = σ2, calculate an unbiased estimate of σ2 using both sets of weights.

93. [Estimation] The time that a customer has to wait for service in a restaurant has the prob-
ability density function

f(x) =

{
3θ3

(x+θ)4
if x ≥ 0

0 otherwise,

where θ is an unknown positive constant. Let X1, X2, . . . , Xn denote a random sample from
this distribution. Show that

θ̂ =
2

n

n∑
i=1

Xi

is an unbiased estimator for θ. Find the standard error of θ̂.

94. [Confidence interval] In an experiment, 100 observations were taken from a normal distribu-
tion with variance 16. The experimenter quoted [1.545, 2.861] as the confidence interval for
µ. What level of confidence was used?
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95. [Confidence interval] At the end of a severe winter a certain insurance company found that
of 972 policy holders living in a large city who had insured their homes with the company,
357 had suffered more than £500-worth of snow and frost damage. Calculate an approximate
95% confidence interval for the proportion of all homeowners in the city who suffered more
than £500-worth of damage. State any assumptions that you make.

96. [Confidence interval] The heights of n randomly selected seven-year-old children were mea-
sured. The sample mean and standard deviation were found to be 121 cm and 5 cm re-
spectively. Assuming that height is normally distributed, calculate the following confidence
intervals for the mean height of seven-year-old children:

(a) 90% with n = 16,

(b) 99% with n = 16,

(c) 95% with n = 16, 25, 100, 225, 400.

97. [Confidence interval] A random variable is known to be normally distributed, but its mean µ
and variance σ2 are unknown. A 95% confidence interval for µ based on 9 observations was
found to be [22.4, 25.6]. Calculate unbiased estimates of µ and σ2.

98. [Confidence interval] The wavelength of radiation from a certain source is 1.372 microns. The
following 10 independent measurements of the wavelength were obtained using a measuring
device:

1.359, 1.368, 1.360, 1.374, 1.375, 1.372, 1.362, 1.372, 1.363, 1.371.

Assuming that the measurements are normally distributed, calculate 95% confidence limits
for the mean error in measurements obtained with this device and comment on your result.

99. [Confidence interval] In five independent attempts, a girl completed a Rubik’s cube in 135.4,
152.1, 146.7, 143.5 and 146.0 seconds. In five further attempts, made two weeks later, she
completed the cube in 133.1, 126.9, 129.0, 139.6 and 144.0 seconds. Find a 90% confidence
interval for the change in the mean time taken to complete the cube. State your assumptions.

100. [Confidence interval] In an experiment to study the effect of a certain concentration of insulin
on blood glucose levels in rats, each member of a random sample of 10 rats was treated with
insulin. The blood glucose level of each rat was measured both before and after treatment.
The results, in suitable units, were as follows.

Rat 1 2 3 4 5 6 7 8 9 10

Level before 2.30 2.01 1.92 1.89 2.15 1.93 2.32 1.98 2.21 1.78
Level after 1.98 1.85 2.10 1.78 1.93 1.93 1.85 1.67 1.72 1.90

Let µ1 and µ2 denote respectively the mean blood glucose levels of a randomly selected rat
before and after treatment with insulin. By considering the differences of the measurements
on each rat and assuming that they are normally distributed, find a 95% confidence interval
for µ1 − µ2.
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101. [Confidence interval] The heights (in metres) of 10 fifteen-year-old boys were as follows:

1.59, 1.67, 1.55, 1.63, 1.69, 1.58, 1.66, 1.62, 1.64, 1.61.

Assuming that heights are normally distributed, find a 99% confidence interval for the mean
height of fifteen-year-old boys.

If you were told that the true mean height of boys of this age was 1.67 m, what would you
conclude?

B.4 Solutions: Statistics examples

92. (a) An unbiased estimate of µb is given by the mean weight of the boys,

µ̂b =
1

10
(77 + 67 + . . .+ 81) = 67.3.

An unbiased estimate of σ2
b is the sample variance of the weights of the boys,

σ̂2
b = ((772 + 672 + . . .+ 812)− 10µ̂2

b)/9 = 52.67̇.

(b) Similarly, unbiased estimates of µg and σ2
g are

µ̂g =
1

10
(42 + 57 + . . .+ 59) = 52.4,

σ̂2
g = ((422 + 572 + . . .+ 592)− 10µ̂2

g)/9 = 56.71̇.

(c) An unbiased estimate of µb − µg is

µ̂b − µ̂g = 67.3− 52.4 = 14.9.

E(σ̂2
b ) = E(σ̂2

g) = σ2 and so

E

(
σ̂2
b + σ̂2

g

2

)
= σ2.

Therefore an unbiased estimate of σ2 which uses both sets of weights is

1

2
(σ̂2
b + σ̂2

g) =
1

2
(52.67̇ + 56.71̇)

= 54.694̇.
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93. The mean of the distribution is

E(X) =

∫ ∞
0

3θ3x

(x+ θ)4
dx

= 3θ3

∫ ∞
θ

y − θ
y4

dy (where y = x+ θ)

= 3θ3

[
− 1

2y2
+

θ

3y3

]∞
θ

= 3θ3

(
1

2θ2
− 1

3θ2

)
= θ/2

Hence E(Xi) = θ/2, i = 1, 2, . . . , n, and E(θ̂) = θ.
Thus θ̂ is an unbiased estimator for θ.

E(X2) =

∫ ∞
0

3θ3x2

(x+ θ)4
dx = 3θ3

∫ ∞
θ

(y − θ)2

y4
dy

= 3θ3

[
− 1

y
+

θ

y2
− θ2

3y3

]∞
θ

= θ2.

So Var(X) = θ2 − (θ/2)2 = 3θ2/4.
Hence Var(θ̂) = 4Var(X̄) = 3θ2/n and SE(θ̂) = θ

√
3/n.

94. The 100(1− α)% symmetric confidence interval is[
x̄− zγ ×

4

10
, x̄+ zγ ×

4

10

]
(γ = 1− α

2
)

where zγ is the 100γ percentile of the standard normal distribution. The width of the CI is
0.8zγ . The width of the quoted confidence interval is 1.316. Therefore, assuming that the
quoted interval is symmetric,

0.8zγ = 1.316⇒ zγ = 1.645⇒ γ = 0.95 (pnorm(1.645) in R).

This implies that α = 0.1 and hence 100(1− α) = 90, i.e. the confidence level is 90%.

95. Assuming that although the 972 homeowners are all insured within the same company they
constitute a random sample from the population of all homeowners in the city, the 95%
interval is given approximately by[

p̂− 1.96

√
p̂(1− p̂)

n
, p̂+ 1.96

√
p̂(1− p̂)

n

]
,

where n = 972 and p̂ = 357/972. The interval is therefore [0.337, 0.398].
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96. The 100(1− α)% confidence interval is, in the usual notation,[
x̄± critical value

s√
n

]
,

where the critical value is the 100(1−α/2)th percentile of the t-distribution with n−1 degrees
of freedom. Here x̄ = 121 and s = 5.

(a) For the 95% CI, critical value = 1.753 (qt(0.95,df=15) in R) and the interval is

[121− 1.753× 5/4, 121 + 1.753× 5/4],

i.e. [118.81, 123.19].

(b) For the 99% CI, critical value = 2.947 (qt(0.995,df=15) in R) and the interval is
[117.32, 124.68].

(c) We obtain the following table

n R command t0.975(n− 1) Confidence Limits

16 qt(0.975,df=15) 2.131 118.34 123.66
25 qt(0.975,df=24) 2.064 118.94 123.06
100 qt(0.975,df=99) 1.984 120.01 121.99
225 qt(0.975,df=224) 1.971 120.34 121.66
400 qt(0.975,df=399) 1.966 120.51 121.49

97. For the 95% the critical value is As 2.306 (qt(0.975,df=8) in R), the interval is[
x̄− 2.306× s

3
, x̄+ 2.306× s

3

]
.

The midpoint is x̄ and therefore

x̄ =
22.4 + 25.6

2
= 24.0.

This is an unbiased estimate of µ.
Also

2.306s

3
=

25.6− 22.4

2
= 1.6.

Hence s = 2.0815 so that s2 = 4.333. This is an unbiased estimate of σ2.

98. In the usual notation, ∑
xi = 13.676,

∑
x2
i = 18.703628.

These lead to
x̄ = 1.3676, s = 0.00606.

Also, for the 95% CI, critical value = 2.262 (qt(0.975,df=9) in R).

Thus a 95% confidence interval for the mean is[
1.3676− 2.262× 0.00606√

10
, 1.3676 + 2.262× 0.00606√

10

]
,
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i.e. [1.3633, 1.3719].

A 95% confidence interval for the mean error is obtained by subtracting the true wavelength
of 1.372 from each endpoint. This gives [−0.0087,−0.0001]. As this contains negative values
only, we conclude that the device tends to underestimate the true value.

99. Using x to refer to the early attempts and y to refer to the later ones, we find from the data
that ∑

xi = 723.7,
∑

x2
i = 104896.71,∑

yi = 672.6,
∑

y2
i = 90684.38.

This gives
x̄ = 144.74, s2

x = 37.093,

ȳ = 134.52, s2
y = 51.557.

Confidence limits for the change in mean time are

ȳ − x̄± critical value

√
4s2
x + 4s2

y

8

(
1

5
+

1

5

)
,

leading to the interval [−18.05,−2.39], as critical value = 1.860 (qt(0.95,df=8) in R).

As it contains only negative values, this suggests that there is a real decrease in the mean
time taken to complete the cube. We have assumed that the two samples are independent
random samples from normal distributions of equal variance.

100. Let d1, d2, . . . , d10 denote the differences in levels before and after treatment. Their values
are

0.32, 0.16,−0.18, 0.11, 0.22, 0.00, 0.47, 0.31, 0.49,−0.12.

Then
∑10

i=1 di = 1.78 and
∑10

i=1 d
2
i = 0.7924 so that d̄ = 0.178, sd = 0.2299.

A 95% confidence interval for the mean difference µ1 − µ2 is[
d̄± critical value

sd√
10

]
,

i.e.
[
0.178 − 2.262 × 0.2299√

10
, 0.178 + 2.262 × 0.2299√

10

]
or [0.014, 0.342], as critical value = 2.262

(qt(0.975,df=9) in R).

Note that the two samples are not independent. Thus the standard method of finding a
confidence interval for µ1 − µ2, as used in Question 9 for example, would be inappropriate.

101. The mean of the heights is 1.624 and the standard deviation is 0.04326. A 99% confidence
interval for the mean height is therefore[

1.624− 3.250× 0.04326√
10

, 1.624 + 3.250× 0.04326√
10

]
,
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i.e. [1.580, 1.668], as critical value = 3.250 (qt(0.995,df=9) in R).

If we were told that the true mean height was 1.67 m then, discounting the possibility that
this information is false, we would conclude that our sample is not a random sample from
the population of all fifteen-year-old boys or that we have such a sample but an event with
probability 0.01 has occurred, namely that the 99% confidence interval does not contain the
true mean height.



Appendix C

Notes for R Laboratory Sessions

Summary

Please watch Lecture 3 on data visualisation with R first before attempting to read this any further.
These notes are designed to help you learn R at your own pace over the three planned R laboratory
hours during weeks 2-4. Live in-person help, if you get stuck, is available during the three
scheduled R lab hours only. Hence, please make the most of these hours. You will be assessed on
your proficiency in using R. More details regarding the assessment will follow.

C.1 R Lab Session 1

C.1.1 What is R?

• R is a statistical programming and analysis language, freely available from the web, developed
through the leadership of Ross Ihaka and Robert Gentleman. Please see
https://cran.r-project.org/ for a range of information including downloading and how
to getting started. The website also links many tutorial pages written by many authors. Here
are some further commands to get you started in R.

• Rstudio is a commercial product that provides a nice front-end for the R language. You can
download a free version from https://rstudio.com/products/rstudio/download/. Down-
loading of both R and Rstudio is recommended if you are working in your own computer with
any of the operating systems: Mac, Windows and Linux.

• R provides many facilities for statistical modelling, data handling and graphical display. It
also allows the user extreme flexibility in manipulating and analysing data.

• R is an object-oriented language, which means that everything is stored as a particular type of
object, with different operations being appropriate for different types of object. For example,
vectors and matrices are both types of object in R. Data are usually stored in a data frame
object, and results of statistical analyses are stored in an object of the appropriate type.

• R has an extensive on-line help system. You can access this using the Help menu. The help
system is particularly useful for looking up commands or functions that you know exist but

143
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whose name or whose syntax you have forgotten. An alternative way of obtaining information
about a function is to type help(<function name>) or ?<function name>, for example
help(plot) or ?plot.

You can also put your query on any internet search engine.

C.1.2 Starting R

You can use Rstudio or R, but Rstudio is the preferred choice since it has nicer operational
functionality with more menu driven options. In the university computing systems you need to go
through the Start menu ==> navigate to Statistics and then you will find R and Rstudio.

In both Rstudio and R there is the R console that allows you to type in commands at the
prompt > directly.

You can exit R by typing

> q()

in the commands window and then hit the Enter key in the keyboard or click the Run button
in the menu. You may also exit by following File→Exit.

C.1.3 R basics, commands and help

• R commands are always of the form <function>(<arguments>). For example,
qnorm(0.975) gives the 97.5% quantile of the standard normal distribution and
qnorm(0.975,2,3) gives the 97.5% quantile of the N(2,32) distribution. In the case where
there are no options, e.g. the command q(), you still need to add the brackets. This is
because R treats all of its commands as functions. If you omit the brackets, then R thinks
that you don’t want to execute the function but simply see the R code which the function
executes. Type plot and see what happens.

• When calling a function, the arguments can be placed in any order provided that they are
explicitly named. Any unnamed argument passed to a function is assigned to the first variable
which has not yet been assigned. Any arguments which have defaults, do not need to be
specified. For example, consider the function qnorm which gives the quantiles of the normal
distribution. We see that the order of arguments is p, mean and sd.

qnorm(0.95, mean=-2.0, sd=3.0)

qnorm(0.95, sd=3.0, mean=-2.0)

qnorm(mean=-2.0, sd=3.0, 0.95)

all have the same effect and they all produce the same result.

• Just typing the command will not produce anything. You will have to execute either by
hitting the Enter key or by clicking the Run button in the menu.

• The assignment operator in R is <-, i.e. a ‘less than’ symbol immediately followed by a hyphen
or simply the equality sign = as you have already seen. For example,

x <- 2 + 2 # The output should be 4!

You can also use the = symbol for assignment. For example, type
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y = 2 + 2

Note that an assignment does not produce any output (unless you have made an error, in
which case an error message will appear). To see the result of an assignment, you need to
examine the contents of the object you have assigned the result of the command to. For
example, typing

x

and then hitting Enter, should now give the output [1] 4. The [1] indicates that 4 is the
first component of x. Of course x only has one component here, but this helps you keep track
when the output is a vector of many components.

• Anything you type after # sign is a comment and R will ignore.

• You can repeat or edit previous commands by using the up and down arrow keys (↑↓).

• We normally put the commands in a file. We can open it by following: File→ Open script.
For this session, please open a new script and type the commands. Periodically save the file
as, for example, Rlabs.R in H:/math1024.

• To run a bunch of commands in the opened script file we highlight the bunch and then press
the Run button in Rstudio (towards the top right corner of the script Window with a green
colour arrow) or the Run line or selection menu button in R.

• All the commands used in the R lab sessions are already typed in the file Rfile1.R that
you can download from Blackboard. It is mostly up to you to decide whether to type in
the commands or step through the commands already there in Rfile1.R. If you are strug-
gling initially, then you can just step through the typed commands. But as you grow more
confidence you should type in yourself to make sure that you understand the commands fully.

C.1.4 Working directory in R

The most important, and the most difficult for beginners, task is to set the working directory in R.
The working directory is the sub-folder in your computer where you would like to save your data
and R programme files. There are essentially two steps that you will have to follow: (i) create a
dedicated folder in your computer for Math1024 and (ii) let R know of the folder location. Please
follow the steps below carefully.

• If you are working in your computer, please create a folder and name it C:/math1024. R is
case sensitive, so if you name it Math1024 instead of math1024 then that’s what you need to
use. Avoid folder names with spaces, e.g. do not use: Math 1024.

• In the university workstations there is a drive called H: which is permanent (will be there for
you to use throughout your 3 (or 4) year degree programme. From Windows File Explorer
navigate to H: and create a sub-folder math1024.

• Please download the data.zip from the webpage:
http://www.personal.soton.ac.uk/sks/teach/math1024/data.zip.
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• Please unzip (extract) the file and save the data files in the math1024 folder you created. You
do not need to download this file again unless you are explicitly told to do so.

• In R, issue the command getwd(), which will print out the current working directory.

• Assuming you are working in the university computers, please set the working directory by
issuing the command: setwd("H:/math1024/"). In your own computer you will modify the
command to something like: setwd("C:/math1024/")

• In Rstudio, a more convenient way to set the working directory is: by following the menu
Session → Set Working Directory. It then gives you a dialogue box to navigate to the
folder you want.

• To confirm that this has been done correctly, re-issue the command getwd() and see the
output.

• Your data reading commands below will not work if you fail to follow the instruc-
tion in this subsection.

• Please remember that you need to issue the setwd("H:/math1024/") every time you log-in.

C.1.5 Reading data into R?

R allows many different ways to read data.

• To read just a vector of numbers separated by tab or space use scan("filename.txt").

• To read a tab-delimited text file of data with the first row giving the column headers, the
command is: read.table("filename.txt", head=TRUE).

• For comma-separated files (such as the ones exported by EXCEL), the command is

read.table("filename.csv", head=TRUE, sep=",") or simply

read.csv("filename.csv", head=TRUE).

• The option head=TRUE tells that the first row of the data file contains the column headers.

• Read the help files by typing ?scan and ?read.table to learn these commands.

• You are reminded that the following data reading commands will fail if you have not set the
working directory correctly.

• Assuming that you have set the working directory to where your data files are saved, simply
type and Run

cfail <- scan("compfail.txt")

ffood <- read.csv("servicetime.csv", head=T)

wgain <- read.table("wtgain.txt", head=T)

bill <- read.table("billionaires.txt", head=T)
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• R does not automatically show the data after reading. To see the data you need to issue a
command like: cfail, head(ffood), tail(bill) etc. after reading in the data.

• You must issue the correct command to read the data set correctly.

• For example, what’s wrong with wrongfood <- read.table("servicetime.csv", head=T)?

In the past, reading data into R has been the most difficult task for students. Please ask for
help in the lab sessions if you are still struggling with this. If all else fails, you can read the data
sets from the course web-page as follows:

• path <- "http://www.personal.soton.ac.uk/sks/teach/math1024/"

• cfail <- scan(paste0(path, "compfail.txt"))

• ffood <- read.csv(paste0(path, "servicetime.csv"), head=T)

C.1.6 Summary statistics from R

• Use summary(ffood); summary(cfail); summary(wgain) and summary(bill) to get the
summaries.

• What does the command table(cfail) give?

• To calculate variance, try var(ffood$AM). What does the command var(c(ffood$AM, ffoood$PM)
give? In R, c is the command to combine elements. For example, x <- c(1, 5).

• Obtain a frequency distribution of region in bill by issuing: table(bill$region).

• Variance and standard deviation (both with divisor n− 1) are obtained by using commands
like var(cfail) and sd(cfail).

C.1.7 Graphical exploration using R

• The commands are stem, hist, plot, barplot, pie and boxplot.

• A stem and leaf diagram is produced by the command stem. Issue the command stem(ffood$AM)
and ?stem to learn more.

• A bar plot is obtained by barplot(table(cfail)). barplot(table(bill$region), col=2:6)

• Histograms are produced by hist(cfail).

• Modify the command so that it looks a bit nicer: hist(cfail, xlab="Number of weekly

computer failures")

• To obtain a scatter plot of the before and after weights of the students, we issue the command
plot(wgain$initial, wgain$final)

• Add a 45o degree line by abline(0, 1, col="red")
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• A nicer and more informative plot can be obtained by: plot(wgain$initial, wgain$final,
xlab="Wt in Week 1", ylab="Wt in Week 12", pch="*", las=1)

abline(0, 1, col="red")

title("A scatter plot of the weights in Week 12 against the weights in Week 1")

• You can save the graph in any format you like using the menus.

• To draw boxplots use the boxplot command, e.g., boxplot(cfail)

• The default boxplot shows the median and whiskers drawn to the nearest observation from
the first and third quartiles but not beyond the distance 1.5 times the inter-quartile range.
Points beyond the two whiskers are suspected outliers and are plotted individually.

• boxplot(ffood) generates two boxplots side-by-side: one for the AM service times and the
other for the PM service times. Try boxplot(data=bill, wealth ∼ region, col=2:6)

• Various parameters of the plot are controlled by the par command. To learn about these
type ?par.

C.1.8 Drawing the butterfly

You are not required to learn R programming in this module. This is meant to be a
fun exercise in exploring function writing, which is called programming, in R. In programming we
group together a bunch of R commands and the bunch may depend on some inputs, e.g. data and
parameters and may result in some desired output or graphics. You may type in the following
statements inside your R script file or use the chunk of code already in the file Rfile1.R that
you may have downloaded from Blackboard. Copy-pasting from the pdf file may not work due to
formatting issues.

## Highlight from below

butterfly <- function(color = 2, p1=2, p2=4) {
theta <- seq(from=0.0, to=24 * pi, len = 2000)

radius <- exp(cos(theta)) - p1 * cos(p2 * theta)

radius <- radius + sin(theta/12)

x <- radius * sin(theta)

y <- - radius * cos(theta)

plot(x, y, type = "l", axes = F, xlab = "", ylab = "", col = color)

} # # Upto the end curly brace.

# Then press the Run button

# # If there are no error messages run the following

butterfly(p1=20, p2=4)

butterfly(color = 6)

par(mfrow=c(2, 2))

butterfly(color = 6)

butterfly(p1=5, p2=5, color=2)

butterfly(p1=10, p2=1.5, color = "seagreen")

butterfly(p1=20, p2=4, color = "blue")
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C.2 R Lab Session 2: R data types

During this laboratory hour we aim to learn a bit more of the R language so that we can manipulate
and query data sets in R. We also learn to create new columns of data by applying transformation
and data manipulation. Your task is to understand the commands by examining the output in each
case.

The most common data types in R are vectors, matrices and data frames. The first two
of these are exactly the same as you are learning in the Math1048: Linear Algebra module. (As
an aside, all the matrix manipulations e.g. addition, multiplication and inversion, can be done
numerically in R.) The third type, data frame, are rectangular arrays where columns could be of
different types, e.g. the ffood and bill we saw previously. The main difference between a data
frame and a matrix is that the columns of a data frame can contain different types of data, e.g.
numbers (weight) and characters (race, sex). A matrix data type will not allow mixing of data
types and hence the data frame type is more useful in analysing large practical data sets.

C.2.1 Vectors and matrices

• Vectors are ordered strings of data values. A vector can be one of numeric, character, logical
or complex types. For example: x <- c(1, 4, 7, 10, 13) puts the five numbers in the
vector x. You can access parts of x by calling things like:

x[1] # gives the first element of x.

x[2:4] # gives the elements x[2], x[3], x[4].

x[-(2:4)] # gives all but x[2], x[3], x[4].

There are various commands for creating vectors. For example, y <- 5:15 puts the numbers
5, 6, . . . , 15 in the vector y. Hence the : operator generates a simple sequence of successive
numbers (with increment 1) between the two endpoints.

Investigate the vectors produced by the following commands, i.e. issue the commands one by
one and then print them by just typing their names and hitting Run:

x <- seq(from=1, to=13, by =3) # a better way of inputting the x above.

?seq # prints out the help file.

a1 <- c(1,3,5,6,8,21) # if you have to input irregular data.

a2 <- seq(5,25, length=5)

a3 <- c(a1,a2)

a4 <- seq(from=min(a1), to=max(a1), length=10)

a5 <- rep(2, 5)

a6 <- c(1, 3, 9)

a7 <- rep(a6, times=2)

a8 <- rep(a6, each=2)

a9 <- rep(a6, c(2, 3, 1))

cbind(a7, a8, a9) # Can you see the differences between a7, a8 and a9?
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You can add, subtract and multiply vectors. For example, examine the output of 2*a6,

a7+a8 etc. R performs these operations element-wise.

• Matrices are rectangular arrays consisting of rows and columns. All data must be of the
same mode. For example, y <- matrix(1:6, nrow=3,ncol=2) creates a 3×2 matrix, called
y. You can access parts of y by calling things like:

y[1,2] # gives the first row second column entry of y

y[1,] # gives the first row of y

y[,2] # gives the second column of y

and so on.

Individual elements of vectors or matrices, or whole rows or columns of matrices may be
updated by assigning them new values, e.g.

a1[1] <- 3

y[1,2] <- 3

y[,2] <- c(2,2, 2).

You can do arithmetic with the matrices, for example suppose

x <- - matrix (1:6, nrow=3,ncol=2)

Now you can simply write z <- x+y to get the sum. However, x*y will get you a new matrix
whose elements are the simple products of corresponding elements of x and y.

C.2.2 Data frames and lists

• Data frames are rectangular arrays where columns could be of different types. Columns of
data frames are vectors and are denoted by <data frame name>$<variable name>. Data
frames are also indexed like matrices, so elements, rows and columns of data, can all be
accessed as for matrices above.

Create a data frame called dframe by issuing the command:

dframe <- data.frame(x=1:10, y=rnorm(10))

You can add a new column to a data frame, dframe say, by issuing:

dframe$xy <- dframe$x * dframe$y

Note that most operations on vectors are performed component-wise, so for example
dframe$x * dframe$y results in a vector of the same length as dframe$x and dframe$y,
containing the component-wise products. Similarly, dframe$x̂ 2-1, 3*sqrt(0.5*dframe$x)
and log(dframe$x)/2 all create vectors of the same length as dframe$x, with the relevant
operation performed component by component.

However, certain statistical operations on vectors result in scalars, for example the func-
tions mean, median, var, min, max, sum, prod etc. Try, for example, mean(dframe$x)
var(dframe$x)
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• The View command lets you see its data frame argument like a spreadsheet. For example, type
View(dframe). In Rstudio the View command is invoked by double clicking the name of the
particular object in the ‘Environment Window’. You can print the list of all the objects in the
current environment by issuing the ls() command. The command for deleting (removing)
objects is rm(name) where name is the object to be removed.

• Lists are used to collect objects of different types. For example, a list may consist of two
matrices and three vectors of different size and modes. The components of a list have individ-
ual names and are accessed using <list name>$<component name>, similar to data frames
(which are themselves lists, of a particular form). For example,

myresults <- list(mean=10, sd=3.32, values=5:15)

Now myresults$mean will print the value of the member mean in the list myresults.

C.2.3 Factors and logical vectors

• Factor There is a data type called factor which is normally used to hold a categorical
variable, for example the region column in bill is a factor. Here are some further examples:

citizen <- factor(c("uk", "us", "no", "in", "es", "in"))

Some functions to use with factors are levels, table, etc.

For example, type

table(citizen)

levels(citizen)

levels(bill$region) # Assuming you read the billionaire data set already.

levels(bill$region) <- c("Asia", "Europe", "Mid-East", "Other", "USA")

• Logical vectors

We can select a set of components of a vector by indicating the relevant components in square
brackets. For example, to select the first element of a1 <- c(1,3,5,6,8,21) we just type in
a1[1]. However, we often want to select components, based on their values, or on the values
of another vector. For example, how can we select all the values in a1 which are greater than
5? For the bill data set we may be interested in all the rows of bill which have wealth
greater than 5, or all the rows for region A.

Typing a condition involving a vector returns a logical vector of the same length containing T

(true) for those components which satisfy the condition and F (false) otherwise. For example,
try

a1[a1>5]

bill$wealth> 5

bill$region == "A"

(note the use of == in a logical operation, to distinguish it from the assignment =). A logical
vector may be used to select a set of components of any other vector. Try
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bill.wealth.ge5 <- bill[bill$wealth>5, ]

bill.wealth.ge5

bill.region.A <- bill[ bill$region == "A", ]

bill.region.A

Note that the comma in the above two commands instructs R to get all the columns of the
data frame bill.

The operations & (and) and | (or) operate on pairs of logical vectors. For example if x <-

1:10, then x>3 & x<7 returns

[1] F F F T T T F F F F

and x<3 | x>7 returns

[1] T T F F F F F T T T

• The functions any and all take a logical vector as their argument, and return a single
logical value. For example, any(x>3 & x<7) returns T, because at least one component of
its argument is T, whereas all(x>3 & x<7) returns F, because not every component of its
argument is T.

• A little exercise. How can you choose subsets of a data frame? For example, how can you pick
only the odd numbered rows? Hint: You can use the seq or rep command learned before.
For example, a <- seq(1, 10, by =2) and oddrows <- bill[a, ]

C.3 R Lab Session 3

In this lab session we will learn some more essential R commands that are often used in statistical
data analysis. For example, we may want to find out the mean and variance of the billionaires
categorised by region. This will help us answer questions like are US billionaires richer than Asian
billionaires? We will also explore a few plotting ideas.

C.3.1 The functions apply and tapply

It is often desirable, in data analysis to carry out the same statistical operation separately on
different segments of a data frame, matrix or list. The function apply allows us to do this when
we want to perform the same function on each row or each column of a matrix or data frame. For
example,

x <- matrix(1:12, byrow=T, ncol=4) # type x to see what matrix you have got.

apply(x, 2, mean) # produces four column means of x

apply(x, 1, mean) # produces three row means of x

Read the help file ?apply

The function tapply allows us to carry out a statistical operation on subsets of a given vector,
defined according to the values of a specified vector. For example, to calculate the mean value of
wealth for each region A, E, M, O, U separately we use

tapply(X=bill$wealth, INDEX=bill$region, FUN=mean)

tapply(X=bill$wealth, INDEX=bill$region, FUN=sd)
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Read the help file ?tapply.

You can round the numbers for nicer printing using:

round(tapply(X=bill$wealth, INDEX=bill$region, FUN=mean), 2)

C.3.2 Plotting

We will learn to generate some interesting and informative plots using the billionaires example.
Please type in the commands and Run after each completed line with a closed ‘)’. You can ignore
the comments after the # sign, i.e. you do not have to type those in.

• hist(bill$wealth) # produces a dull looking plot.

• hist(bill$wealth, nclass=20) # produces a more detailed plot.

• hist(bill$wealth, nclass=20, xlab="Wealth",

main="Histogram of wealth of billionaires") # produces a more detailed plot.

• boxplot(data=bill, wealth∼region, col=2:6) # Side by side box plots of wealth by
region. The ∼ notation in R has a left hand side and a right hand side. In the left hand side
we put the variable which goes in the y-axis and the right hand side may contain the formula
terms which go in the x-axis, y ∼ x, y ∼ x1 + x2. These two are examples of what is called
a formula in R, which we use in regression (or curve fitting).

• boxplot(data=bill, age∼region, col=2:6) # Age distribution of the wealthy by region.

• plot(bill$age, bill$wealth) # Very dull plot.

• plot(bill$age, bill$wealth, xlab="Age", ylab="Wealth", pch="*") # A bit better.

• plot(bill$age, bill$wealth, xlab="Age", ylab="Wealth", type="n") # Lays the plot
area but does not plot.

• text(bill$age, bill$wealth, labels=bill$region, cex=0.7, col=2:6) # Adds the points
to the empty plot. Definitely a better looking plot where we can grasp a bit more information.

• All these graphics are done a lot better using a more advanced graphics package called
ggplot2. Learning of this package is not required for Math1024 assessment. But you are
invited to get started with this for your own advanced skill development. You can skip ggplot

and go straight to the next subsection if you want.

• You first install the package by issuing: install.packages("ggplot2")

• If installation is successful, then invoke the library by issuing: library(ggplot2)

• Before plotting we re-name the levels of the region:

levels(bill$region) <- c("Asia", "Europe", "Mid-East", "Other", "USA")
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• Now obtain a basic ggplot first:

g1 <- ggplot(data=bill, aes(x=age, y=wealth)) +

geom point(aes(col=region, size=wealth))

• Hit Run and then type in g1 and then hit Run.

• Observe that the ggplot command takes a data frame argument and aes is the short form
for aesthetics. The arguments of aes can be varied depending on the desired plot. Here we
just have the x and y’s required to draw a scatter plot.

• Add a smooth curve

g2 <- g1 + geom smooth(method="loess", se=F) # Hit Run

g2 # Hit Run to see what has been added.

• Add some informative title and axis labels.

g3 <- g2 +

labs(subtitle="Wealth vs Age of Billionaires",

x="Age", y="Wealth (Billion US $)", caption = "Source: Fortune Magazine, 1992.")

# Hit Run

g3 # Hit Run
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C.3.3 Assessment style practice example

We will use the age guessing data collected by the students in the last year’s Math1024 class. In the
very second lecture in Math1024, students who sat next to each other were formed into 55 groups
of sizes 2 and 3. Each group guessed the ages of 10 Southampton mathematicians of different races.
The resulting data set contains the error committed by each group of students for each of the 10
photographs. The results for each age guess by each group of students form a row of the data set.
The column headings and their descriptions are provided below.

1. group: This is the group number of the group of students who sat together for the age guessing
exercise. There were 55 groups in total.

2. size: Number of students in the group.

3. females: Number of female students in the group. Hence the number of males in each group is:
size – females. There were no other gender type of students. This can be used to investigate
if female students are on average better at guessing ages from photographs.

4. photo: photograph number guessed, can take value 1 to 10 for 10 photographs.

5. sex: Gender of the photographed person.

6. race: Race of the photographed person.

7. est age: Estimated age of the person in the photograph.

8. tru age: True age of the person in the photograph.

9. error: Error in age estimation: est age – tru age

10. abs error: absolute value of the error: |est age – tru age|

Use the command errors <- read.csv("2019ageguess.csv", head=T) to read the data. An-
swer the following questions.

1. How many rows and columns are there in the data set?

2. How many students were there in the age guessing exercise on that day? You may use the
built-in sum command. (Think, it is not 1500!) How many of the students were male and
how many were female?

3. Looking at the column tru age (e.g. by obtaining a frequency table), find the number of
photographed mathematicians for each unique value of age. Remember there are only 10
photographed mathematicians!

4. The table command can take multiple arguments for cross-tabulation. Use the table com-
mand to obtain a two-way table providing the distribution of 10 photographed mathematicians
in different categories of race and gender.
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5. What are the minimum and maximum true ages of the photographed mathematicians?

6. Obtain a barplot of the true age distribution. This is the unknown population distribution
of the true ages of photographed mathematicians.

7. Obtain a histogram of the estimated age column and compare this with the true age distri-
bution seen in the barplot drawn above.

8. What is the command for plotting estimated age (on the y-axis and) against true age?

9. What are the means and standard deviations for the columns: size, females, est age, tru age,
error and abs error?

10. What is the mean number of males in each group? What is the mean number of females in
each group?

11. How many of the photographs were of each race?

12. Note down the frequency table of the sign of the errors. That is, obtain the numbers of
negative, zero and positive errors. You may use the built-in sign function for this.

13. Obtain a histogram for the errors and another for the absolute errors. Which one is bell
shaped and why?

14. Obtain a histogram for the square-root of the absolute errors. Does it look more bell shaped
than the histogram of just the absolute errors?

15. Draw a boxplot of the absolute errors and comment on its shape.

16. Is it easier to guess the ages of female mathematicians?

17. Draw a side by side boxplot of the absolute errors for the two groups of mathematicians:
males and females.

18. Is it easier to guess the ages of black mathematicians? How would you order the mean absolute
error by race?

19. Is it easier to guess the ages of younger mathematicians?

20. Which person’s age is the most difficult to guess?

There is a R cheatsheet (see below) that you can download from Blackboard (under Course
Content and R resources) for more help with getting started.
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Input Ouput Description 

df <- read.table(‘file.txt’) write.table(df, ‘file.txt’) Read and write a delimited text 
file.

df <- read.csv(‘file.csv’) write.csv(df, ‘file.csv’)

Read and write a comma 
separated value file. This is a 

special case of read.table/
write.table. 

load(‘file.RData’) save(df, file = ’file.Rdata’) Read and write an R data file, a 
file type special for R. 

?mean  
Get help of a particular function. 
help.search(‘weighted mean’) 
Search the help files for a word or phrase. 
help(package = ‘dplyr’) 
Find help for a package. 

Getting Help
Accessing the help files

More about an object

str(iris) 
Get a summary of an object’s structure.  
class(iris) 
Find the class an object belongs to.

Programming
For Loop

for (variable in sequence){ 

Do something 

}

Example
for (i in 1:4){ 

j <- i + 10 

print(j) 

}

While Loop

while (condition){ 

Do something 

}

Example
while (i < 5){ 

print(i) 

i <- i + 1 

}

If Statements

if (condition){ 
Do something 

} else { 
Do something different  

}

Example
if (i > 3){ 

print(‘Yes’) 
} else { 

print(‘No’)  
}

Functions
function_name <- function(var){ 

Do something 

return(new_variable) 
}

Example
square <- function(x){ 

squared <- x*x 

return(squared) 
}

a == b Are equal a > b Greater than a >= b Greater than 
or equal to

is.na(a) Is missing

a != b Not equal a < b Less than a <= b Less than or 
equal to

is.null(a) Is null 
Conditions

Creating Vectors

c(2, 4, 6) 2 4 6 Join elements into 
a vector 

2:6 2 3 4 5 6 An integer 
sequence

seq(2, 3, by=0.5) 2.0 2.5 3.0 A complex 
sequence

rep(1:2, times=3) 1 2 1 2 1 2 Repeat a vector

rep(1:2, each=3) 1 1 1 2 2 2 Repeat elements 
of a vector 

Using Libraries
install.packages(‘dplyr’) 
Download and install a package from CRAN. 

library(dplyr)  
Load the package into the session, making all 
its functions available to use.  

dplyr::select  
Use a particular function from a package. 

data(iris) 
Load a built-in dataset into the environment. 

Vectors

Selecting Vector Elements 

x[4] The fourth element.

x[-4] All but the fourth.

x[2:4] Elements two to four.

x[-(2:4)] All elements except 
two to four.

x[c(1, 5)] Elements one and 
five.

x[x == 10] Elements which 
are equal to 10.

x[x < 0] All elements less 
than zero.

x[x %in%  
c(1, 2, 5)]

Elements in the set 
1, 2, 5.

By Position

By Value

Named Vectors 

x[‘apple’] Element with 
name ‘apple’.

Reading and Writing Data

Working Directory
getwd() 
Find the current working directory (where 
inputs are found and outputs are sent). 

setwd(‘C://file/path’) 
Change the current working directory. 

Use projects in RStudio to set the working  
directory to the folder you are working in.  

Vector Functions
sort(x)  
Return x sorted.

rev(x)  
Return x reversed.

table(x)  
See counts of values.

unique(x)  
See unique values.
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Lists

Matrixes

Data Frames

Maths Functions 

Types Strings 

Factors 

Statistics 

Distributions 

as.logical TRUE, FALSE, TRUE Boolean values (TRUE or FALSE).

as.numeric 1, 0, 1 Integers or floating point 
numbers.

as.character '1', '0', '1' Character strings. Generally 
preferred to factors.

as.factor
'1', '0', '1', 
levels: '1', '0'

Character strings with preset 
levels. Needed for some 

statistical models. 

Converting between common data types in R. Can always go 
from a higher value in the table to a lower value. 

> a <- 'apple' 
> a 
[1] 'apple'

The Environment

Variable Assignment

ls() List all variables in the 
environment.

rm(x) Remove x from the 
environment.

rm(list = ls()) Remove all variables from the 
environment.

You can use the environment panel in RStudio to 
browse variables in your environment. 

factor(x) 
Turn a vector into a factor. Can 
set the levels of the factor and 

the order.

m <- matrix(x, nrow = 3, ncol = 3) 
 Create a matrix from x.

wwwwww
m[2,  ] - Select a row

m[ , 1] - Select a  column

m[2, 3] -  Select an elementwwwwww
wwwwww

t(m) 
Transpose 
m %*% n 

Matrix Multiplication 
solve(m, n) 

Find x in: m * x = n

l <- list(x = 1:5, y = c('a', 'b')) 
 A list is collection of elements which can be of different types. 

l[[2]] l[1] l$x l['y']

Second element 
of l.

New list with 
only the first 

element.

Element named 
x.

New list with 
only element 

named y.

df <- data.frame(x = 1:3, y = c('a', 'b', 'c')) 
A special case of a list where all elements are the same length.

t.test(x, y) 
Preform a t-test for 
difference between 

means. 

pairwise.t.test 
Preform a t-test for 

 paired data.

log(x) Natural log. sum(x) Sum.

exp(x) Exponential. mean(x) Mean.

max(x) Largest element. median(x) Median. 

min(x) Smallest element. quantile(x) Percentage 
quantiles.

round(x, n) Round to n decimal 
places.

rank(x) Rank of elements.

signif(x, n) Round to n 
significant figures.

var(x) The variance.

cor(x, y) Correlation. sd(x) The standard 
deviation.

x y

1 a

2 b

3 c

Matrix subsetting

df[2, ]

df[ , 2]

df[2, 2]

List subsetting

df$x df[[2]]

cbind - Bind columns.

rbind - Bind rows.

View(df) See the full data 
frame.

head(df) See the first 6 
rows.

Understanding a data frame

nrow(df) 
Number of rows. 

ncol(df) 
Number of 
columns. 

dim(df) 
Number of 
columns and 
rows.

Plotting  

Dates See the lubridate library.

Also see the ggplot2 library.

Also see the stringr library.

Also see the 
dplyr library.

plot(x) 
Values of x in 

order.

plot(x, y) 
Values of x 
against y.

hist(x) 
Histogram of 

x.

Random 
Variates 

Density 
Function

Cumulative 
Distribution

Quantile

Normal rnorm dnorm pnorm qnorm

Poison rpois dpois ppois qpois

Binomial rbinom dbinom pbinom qbinom

Uniform runif dunif punif qunif

lm(x ~ y, data=df) 
Linear model. 

glm(x ~ y, data=df) 
Generalised linear model. 

summary 
Get more detailed information 

 out a model.

prop.test 
Test for a 
difference 
between 

proportions. 

aov 
Analysis of 
variance. 

paste(x, y, sep = ' ') Join multiple vectors together.

paste(x, collapse = ' ') Join elements of a vector together.

grep(pattern, x) Find regular expression matches in x. 

gsub(pattern, replace, x) Replace matches in x with a string.

toupper(x) Convert to uppercase.

tolower(x) Convert to lowercase.

nchar(x) Number of characters in a string. 

cut(x, breaks = 4) 
Turn a numeric vector into a 

factor but ‘cutting’ into 
sections.  
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